Illustrative Visualization of Mesoscale Ocean Eddies

Feature‐based time‐varying volume visualization is combined with illustrative visualization to tell the story of how mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three‐dimensional eddies and the kinematics with which they move are critical to a full understanding of ocean eddies. In this work, we apply a feature‐based method to track instances of ocean eddies through the time steps of a high‐resolution multi‐decadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. Based on the computed metadata, several important geometric and physical properties of eddy are computed. Illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, are combined with the extracted volume features to explore eddy characteristics at different levels. An evaluation by domain experts indicates that combining our feature‐based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. The domain experts expressed a preference for our methods over existing tools.

[1]  A. Ōkubo Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences , 1970 .

[2]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[3]  P T Fox,et al.  A geometric model for measurement of surface distance, surface area, and volume from tomographic images. , 1992, Medical physics.

[4]  Deborah Silver,et al.  Visualizing features and tracking their evolution , 1994, Computer.

[5]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[6]  Xin Wang,et al.  Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..

[7]  Kwan-Liu Ma,et al.  A fast volume rendering algorithm for time-varying fields using a time-space partitioning (TSP) tree , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[8]  David Ellsworth,et al.  Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[9]  Zhifan Zhu,et al.  Extracting and Visualizing Ocean Eddies in Time--Varying Flow Fields , 2000 .

[10]  Kwan-Liu Ma,et al.  Compression and Accelerated Rendering of Time-Varying Volume Data , 2000 .

[11]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[12]  T. J. Jankun-Kelly,et al.  A Study of Transfer Function Generation for Time-Varying Volume Data , 2001, VG.

[13]  Hans J. W. Spoelder,et al.  Visualization of time-dependent data with feature tracking and event detection , 2001, The Visual Computer.

[14]  David S. Ebert,et al.  Volume Illustration: Nonphotorealistic Rendering of Volume Models , 2001, IEEE Trans. Vis. Comput. Graph..

[15]  Kwan-Liu Ma,et al.  A Hardware-Assisted Scalable Solution for Interactive Volume Rendering of Time-Varying Data , 2002, IEEE Trans. Vis. Comput. Graph..

[16]  James F. O'Brien,et al.  Case study: Visualizing ocean flow vertical motions using Lagrangian-Eulerian time surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[17]  James C. McWilliams,et al.  A method for computing horizontal pressure‐gradient force in an oceanic model with a nonaligned vertical coordinate , 2003 .

[18]  Han-Wei Shen,et al.  Volume tracking using higher dimensional isosurfacing , 2003, IEEE Visualization, 2003. VIS 2003..

[19]  Ivan Viola,et al.  Focus of attention+context and smart visibility in visualization , 2005, SIGGRAPH Courses.

[20]  Ivan Viola,et al.  Importance-driven feature enhancement in volume visualization , 2005, IEEE Transactions on Visualization and Computer Graphics.

[21]  Penny Rheingans,et al.  Illustration-inspired techniques for visualizing time-varying data , 2005, VIS 05. IEEE Visualization, 2005..

[22]  Han-Wei Shen,et al.  Feature Tracking Using Earth Mover ’ s Distance and Global Optimization , 2006 .

[23]  Helwig Hauser,et al.  Generalizing Focus+Context Visualization , 2006 .

[24]  Penny Rheingans,et al.  Texture-based feature tracking for effective time-varying data visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[25]  S. Speich,et al.  Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies - art. no. C05043 , 2007 .

[26]  Ivan Viola,et al.  Illustrative visualization: new technology or useless tautology? , 2008, COMG.

[27]  Han-Wei Shen,et al.  Interactive Storyboard for Overall Time-Varying Data Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[28]  Penny Rheingans,et al.  Evaluation of illustration‐inspired techniques for time‐varying data visualization , 2008, Comput. Graph. Forum.

[29]  Nancy Argüelles,et al.  Author ' s , 2008 .

[30]  Kwan-Liu Ma,et al.  Depicting Time Evolving Flow with Illustrative Visualization Techniques , 2009, ArtsIT.

[31]  Kwan-Liu Ma,et al.  Interactive feature extraction and tracking by utilizing region coherency , 2009, 2009 IEEE Pacific Visualization Symposium.

[32]  Penny Rheingans,et al.  Case Study on Visualizing Hurricanes Using Illustration-Inspired Techniques , 2009, IEEE Transactions on Visualization and Computer Graphics.

[33]  John B. Bell,et al.  Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  Silvia Born,et al.  Illustrative Stream Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[35]  Bernd Hamann,et al.  Visualization and Analysis of Eddies in a Global Ocean Simulation , 2011, Comput. Graph. Forum.

[36]  Oscar Pizarro,et al.  Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats , 2011 .

[37]  Ivan Viola,et al.  Illustrative Flow Visualization: State of the Art, Trends and Challenges , 2012, Eurographics.

[38]  Kwan-Liu Ma,et al.  Group dynamics in scientific visualization , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[39]  Kwan-Liu Ma,et al.  Scientific Storytelling Using Visualization , 2012, IEEE Computer Graphics and Applications.

[40]  John P. Clyne,et al.  Physically-Based Feature Tracking for CFD Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[41]  B. Hamann,et al.  A three‐dimensional eddy census of a high‐resolution global ocean simulation , 2013 .

[42]  Enrique N. Curchitser,et al.  Gulf Stream eddy characteristics in a high-resolution ocean model , 2013 .

[43]  Karen G. Bemis,et al.  Activity Detection in Scientific Visualization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[44]  Francesca Samsel,et al.  Visualization of Ocean Currents and Eddies in a High-Resolution Global Ocean-Climate Model , 2015 .

[45]  Hans Hagen,et al.  In Situ Eddy Analysis in a High-Resolution Ocean Climate Model , 2016, IEEE Transactions on Visualization and Computer Graphics.

[46]  Fumiaki Araki,et al.  A New Approach to Ocean Eddy Detection, Tracking, and Event Visualization-Application to The Northwest Pacific Ocean , 2016, ICCS.