Supramolecular Assembly of Perylene Bisimide with β‐Cyclodextrin Grafts as a Solid‐State Fluorescence Sensor for Vapor Detection

A nanoscopic supramolecular aggregate is constructed from perylene bisimide-bridged bis-(permethyl-β-cyclodextrins) 1 via π–π stacking interactions. Its self-assembly behavior in organic and aqueous solutions is investigated by UV–Vis, fluorescence, and 1H NMR spectroscopy. Transmission electron microscopy and scanning electron microscopy images show the 1D nanorod aggregation of 1, which is birefringent under crossed polarizer conditions and strongly fluorescent as depicted in the fluorescence microscopy image. X-ray powder diffraction measurements indicate that 1 forms a well-ordered crystalline arrangement with a π–π stacking distance of 4.02 A. Furthermore, the solid-state fluorescence sensing is explored by utilizing the poly(vinylidene fluoride) membrane-embedded 1, giving that 1, as a novel vapor detecting material, can probe several kinds of volatile organic compounds and, especially, exhibits high sensitivity to organic amines.

[1]  Jean-Luc Brédas,et al.  Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors , 2004 .

[2]  Ifor D. W. Samuel,et al.  Organic semiconductor lasers. , 2007 .

[3]  P. Marquetand,et al.  Photoluminescence and Conductivity of Self-Assembled π–π Stacks of Perylene Bisimide Dyes , 2007 .

[4]  Alexander D. Q. Li,et al.  Tunable molecular assembly codes direct reaction pathways. , 2008, Angewandte Chemie.

[5]  S. W. Thomas,et al.  Chemical sensors based on amplifying fluorescent conjugated polymers. , 2007, Chemical reviews.

[6]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[7]  T. Swager,et al.  Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials , 1998 .

[8]  D. Moses,et al.  Photoluminescence of water-soluble conjugated polymers : Origin of enhanced Quenching by charge transfer , 2000 .

[9]  A. P. Silva,et al.  Arenedicarboximide Building Blocks for Fluorescent Photoinduced Electron Transfer pH Sensors Applicable with Different Media and Communication Wavelengths , 1998 .

[10]  Zhengguo Zhu,et al.  Sensitivity gains in chemosensing by lasing action in organic polymers , 2005, Nature.

[11]  M. Wasielewski Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. , 2006, The Journal of organic chemistry.

[12]  Ling Zang,et al.  One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices. , 2008, Accounts of chemical research.

[13]  William C. Trogler,et al.  Polymer sensors for nitroaromatic explosives detection , 2006 .

[14]  F. Würthner,et al.  Energy transfer in calixarene-based cofacial-positioned perylene bisimide arrays. , 2006, Journal of the American Chemical Society.

[15]  J. Westbrook,et al.  Lasing action in a family of perylene derivatives: singlet absorption and emission spectra, triplet absorption and oxygen quenching constants, and molecular mechanics and semiempirical molecular orbital calculations , 1992 .

[16]  P. Mayer,et al.  A novel fluorescent dye with strong, anisotropic solid-state fluorescence, small stokes shift, and high photostability. , 2005, Angewandte Chemie.

[17]  Zhijian Chen,et al.  Self-assembled pi-stacks of functional dyes in solution: structural and thermodynamic features. , 2009, Chemical Society reviews.

[18]  S. Yagai,et al.  Supramolecular nanoribbons and nanoropes generated from hydrogen-bonded supramolecular polymers containing perylene bisimide chromophores. , 2007, Organic letters.

[19]  David Beljonne,et al.  Ground- and Excited-State Pinched Cone Equilibria in Calix(4)arenes bearing Two Perylene Bisimide Dyes , 2008 .

[20]  Zhenan Bao,et al.  Core‐Fluorinated Perylene Bisimide Dyes: Air Stable n‐Channel Organic Semiconductors for Thin Film Transistors with Exceptionally High On‐to‐Off Current Ratios , 2007 .

[21]  Ruchuan Liu,et al.  A single-molecule probe based on intramolecular electron transfer. , 2002, Journal of the American Chemical Society.

[22]  T. Swager Iptycenes in the design of high performance polymers. , 2008, Accounts of chemical research.

[23]  Jason J. Han,et al.  Architecturally diverse nanostructured foldamers reveal insightful photoinduced single-molecule dynamics. , 2008, Journal of the American Chemical Society.

[24]  Jason J. Han,et al.  Folding and unfolding of chromophoric foldamers show unusual colorful single molecule spectral dynamics. , 2006, Journal of the American Chemical Society.

[25]  R. Nolte,et al.  Molecular Materials by Self‐Assembly of Porphyrins, Phthalocyanines, and Perylenes , 2006 .

[26]  Ling Zang,et al.  Expedient vapor probing of organic amines using fluorescent nanofibers fabricated from an n-type organic semiconductor. , 2008, Nano letters.

[27]  Alexander D. Q. Li,et al.  To fold or to assemble? , 2003, Journal of the American Chemical Society.

[28]  Frank Würthner,et al.  Excited state interactions in calix[4]arene-perylene bisimide dye conjugates: Global and target analysis of supramolecular building blocks , 2007 .

[29]  A. Harriman,et al.  Solid-state gas sensors developed from functional difluoroboradiazaindacene dyes. , 2009, Chemistry.

[30]  Kaushik Balakrishnan,et al.  Linearly polarized emission of an organic semiconductor nanobelt. , 2006, The journal of physical chemistry. B.

[31]  Michael W. Holman,et al.  Self-organized perylene diimide nanofibers. , 2005, The journal of physical chemistry. B.

[32]  Yong Chen,et al.  Cooperative binding and multiple recognition by bridged bis(beta-cyclodextrin)s with functional linkers. , 2006, Accounts of chemical research.

[33]  F. Würthner,et al.  Sequential FRET Processes in Calix[4]arene-Linked Orange-Red-Green Perylene Bisimide Dye Zigzag Arrays , 2008 .

[34]  Alexander D. Q. Li,et al.  Folding versus self-assembling. , 2003, Chemistry.

[35]  K. Polborn,et al.  Ein Fluoreszenzfarbstoff mit starker, anisotroper Feststoff‐Fluoreszenz, kleiner Stokes‐Verschiebung und hoher Lichtechtheit , 2005 .

[36]  Zhijian Chen,et al.  Functional organogels from highly efficient organogelator based on perylene bisimide semiconductor. , 2006, Chemical communications.

[37]  S. Diele,et al.  Fluorescent J-type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. , 2001, Chemistry.

[38]  Frank Würthner,et al.  Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. , 2004, Chemical communications.

[39]  A. Ajayaghosh,et al.  Detection of zinc ions under aqueous conditions using chirality assisted solid-state fluorescence of a bipyridyl based fluorophore. , 2008, Chemical communications.

[40]  Kaushik Balakrishnan,et al.  Nanobelt self-assembly from an organic n-type semiconductor: propoxyethyl-PTCDI. , 2005, Journal of the American Chemical Society.

[41]  S. Waldvogel,et al.  Mit β‐Cyclodextrin‐modifizierten Diphosphanen als Liganden zu supramolekularen Rhodiumkatalysatoren , 1997 .

[42]  M. Kane,et al.  O2 Quenching of Ruthenium(II) Tris(2,2‘-bypyridyl)2+ within the Water Pool of Perfluoropolyether-Based Reverse Micelles Formed in Supercritical Carbon Dioxide , 2000 .

[43]  M. Reetz,et al.  β‐Cyclodextrin‐Modified Diphosphanes as Ligands for Supramolecular Rhodium Catalysts , 1997 .

[44]  Jincai Zhao,et al.  Detection of explosives with a fluorescent nanofibril film. , 2007, Journal of the American Chemical Society.

[45]  U. Bunz,et al.  Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 1. Rotationally interrupted conjugation in the excited states of 1,4-bis(phenylethynyl)benzene. , 2001, Journal of the American Chemical Society.

[46]  S. Immel,et al.  Per‐O‐methylated α‐ and β‐CD: Cyclodextrins with Inverse Hydrophobicity , 1996 .

[47]  Zhenan Bao,et al.  Air‐Stable n‐Channel Organic Semiconductors Based on Perylene Diimide Derivatives without Strong Electron Withdrawing Groups , 2007 .

[48]  B. Swanson,et al.  Molecular recognition and self-assembled polymer films for vapor phase detection of explosives. , 2001, Talanta.

[49]  Bernd Engels,et al.  Exciton trapping in pi-conjugated materials: a quantum-chemistry-based protocol applied to perylene bisimide dye aggregates. , 2008, Journal of the American Chemical Society.

[50]  F. Würthner,et al.  Transformation from H- to J-aggregated perylene bisimide dyes by complexation with cyanurates. , 2008, Angewandte Chemie.

[51]  D. Buisson,et al.  Synthesis of calixarene–cyclodextrin coupling products , 2006 .

[52]  C.‐T. Chen,et al.  Red‐Emitting Fluorenes as Efficient Emitting Hosts for Non‐Doped, Organic Red‐Light‐Emitting Diodes , 2005 .