Machine Learning Biochemical Networks from Temporal Logic Properties

One central issue in systems biology is the definition of formal languages for describing complex biochemical systems and their behavior at different levels. The biochemical abstract machine BIOCHAM is based on two formal languages, one rule-based language used for modeling biochemical networks, at three abstraction levels corresponding to three semantics: boolean, concentration and population; and one temporal logic language used for formalizing the biological properties of the system. In this paper, we show how the temporal logic language can be turned into a specification language. We describe two algorithms for inferring reaction rules and kinetic parameter values from a temporal specification formalizing the biological data. Then, with an example of the cell cycle control, we illustrate how these machine learning techniques may be useful to the modeler.

[1]  José Meseguer,et al.  Pathway Logic: Symbolic Analysis of Biological Signaling , 2001, Pacific Symposium on Biocomputing.

[2]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[3]  Stephen Muggleton,et al.  Combining Inductive Logic Programming, Active Learning and Robotics to Discover the Function of Genes , 2001, Electron. Trans. Artif. Intell..

[4]  Luca Cardelli,et al.  Brane Calculi Interactions of Biological Membranes , 2004 .

[5]  H. Kitano,et al.  Bio-calculus : Its Concept , and an Application for Molecular Interaction , 2000 .

[6]  Stephan Merz,et al.  Model Checking , 2000 .

[7]  Radu Mateescu,et al.  Model Checking Genetic Regulatory Networks Using GNA and CADP , 2004, SPIN.

[8]  Adrien Richard,et al.  Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic. , 2004, Journal of theoretical biology.

[9]  Andreas Podelski,et al.  ACSAR: Software Model Checking with Transfinite Refinement , 2007, SPIN.

[10]  David R. Gilbert,et al.  Analysis of Signalling Pathways Using Continuous Time Markov Chains , 2006, Trans. Comp. Sys. Biology.

[11]  Stephen Muggleton,et al.  Machine learning metabolic pathway descriptions using a probabilistic relational representation , 2002 .

[12]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[13]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[14]  François Fages,et al.  Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM , 2002 .

[15]  François Fages,et al.  Symbolic Model Checking of Biochemical Networks , 2003, CMSB.

[16]  Thomas Hérault,et al.  Approximate Probabilistic Model Checking , 2004, VMCAI.

[17]  K. Kohn Molecular interaction map of the mammalian cell cycle control and DNA repair systems. , 1999, Molecular biology of the cell.

[18]  David Gilbert,et al.  Analysis of signalling pathways using the prism model checker , 2005 .

[19]  Grégory Batt,et al.  Validation de modèles qualitatifs de réseaux de régulation génique: une méthode basée sur des techniques de vérification formelle. (Validation of qualitative models of genetic regulatory networks: a method based on formal verification techniques) , 2006 .

[20]  François Fages,et al.  The Biochemical Abstract Machine BIOCHAM , 2004, CMSB.

[21]  J. Weiss,et al.  Dynamics of the cell cycle: checkpoints, sizers, and timers. , 2003, Biophysical journal.

[22]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[23]  François Fages,et al.  A Machine Learning approach to Biochemical Reaction Rules Discovery , 2005 .

[24]  Luca Cardelli,et al.  A Correct Abstract Machine for the Stochastic Pi-calculus , 2004 .

[25]  Onami,et al.  Bio-calculus: Its Concept and Molecular Interaction. , 1999, Genome informatics. Workshop on Genome Informatics.

[26]  Dong Wang,et al.  Using cutwidth to improve symbolic simulation and Boolean satisfiability , 2001, Sixth IEEE International High-Level Design Validation and Test Workshop.

[27]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[28]  Jehoshua Bruck,et al.  A probabilistic model of a prokaryotic gene and its regulation , 1999 .

[29]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[30]  Marta Z. Kwiatkowska,et al.  PRISM 2.0: a tool for probabilistic model checking , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[31]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[32]  Vincent Danos,et al.  Modeling and querying biomolecular interaction networks , 2004, Theor. Comput. Sci..

[33]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[34]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[35]  Marco Pistore,et al.  NuSMV 2: An OpenSource Tool for Symbolic Model Checking , 2002, CAV.

[36]  Alberto Policriti,et al.  Model building and model checking for biochemical processes , 2007, Cell Biochemistry and Biophysics.

[37]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[38]  C. Chothia,et al.  Currents in Computational Molecular Biology , 2000 .