Neutron absorption constraints on the composition of 4 Vesta

Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock‐forming elements. From a circular, polar low‐altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole‐rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg‐rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine‐rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

[1]  O. Forni,et al.  Distribution of iron on Vesta , 2013 .

[2]  T. Hiroi,et al.  Challenges in detecting olivine on the surface of 4 Vesta , 2013 .

[3]  R. Reedy,et al.  Constraints on Vesta's elemental composition: Fast neutron measurements by Dawn's gamma ray and neutron detector , 2013, Meteoritics & planetary science.

[4]  O. Forni,et al.  Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties , 2013 .

[5]  Richard P. Binzel,et al.  Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites , 2013 .

[6]  L. Elkins‐Tanton,et al.  The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta , 2013 .

[7]  R. Reedy,et al.  Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high‐energy gamma rays , 2013 .

[8]  D. Mittlefehldt,et al.  Composition and petrology of HED polymict breccias: The regolith of (4) Vesta , 2013 .

[9]  D. Lawrence,et al.  New insights into the global composition of the lunar surface from high‐energy gamma rays measured by Lunar Prospector , 2013 .

[10]  J. Wasson No Magma Ocean on Vesta (or Elsewhere in the Asteroid Belt; Volatile Loss from HEDs , 2013 .

[11]  W. Benz,et al.  The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions , 2013, Nature.

[12]  Eleonora Ammannito,et al.  Composition of the Rheasilvia basin, a window into Vesta's interior , 2013 .

[13]  David Bazell,et al.  Evidence for Water Ice Near Mercury’s North Pole from MESSENGER Neutron Spectrometer Measurements , 2013, Science.

[14]  C. Russell,et al.  Dark material on Vesta from the infall of carbonaceous volatile-rich material , 2012, Nature.

[15]  M. C. De Sanctis,et al.  Distinctive space weathering on Vesta from regolith mixing processes , 2012, Nature.

[16]  Alessandro Frigeri,et al.  DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION , 2012 .

[17]  R. Binzel A Golden Spike for Planetary Science , 2012, Science.

[18]  Olivier Forni,et al.  Elemental Mapping by Dawn Reveals Exogenic H in Vesta’s Regolith , 2012, Science.

[19]  C. Russell,et al.  Pitted Terrain on Vesta and Implications for the Presence of Volatiles , 2012, Science.

[20]  C. Russell,et al.  Delivery of dark material to Vesta via carbonaceous chondritic impacts , 2012, 1208.2833.

[21]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[22]  David J. Williams,et al.  The Geologically Recent Giant Impact Basins at Vesta’s South Pole , 2012, Science.

[23]  Andreas Nathues,et al.  Color and Albedo Heterogeneity of Vesta from Dawn , 2012, Science.

[24]  H Y McSween,et al.  Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta , 2012, Science.

[25]  R. Jaumann,et al.  Vesta’s Shape and Morphology , 2012, Science.

[26]  H. McSween,et al.  Compositional constraints on the genesis of diogenites , 2012 .

[27]  John S. Hendricks,et al.  Dawn’s Gamma Ray and Neutron Detector , 2011 .

[28]  C. Hardgrove,et al.  Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory's Dynamic Albedo of Neutrons experiment , 2011 .

[29]  Dominick Bruno,et al.  The Dawn Spacecraft , 2011 .

[30]  H. McSween,et al.  HED Meteorites and Their Relationship to the Geology of Vesta and the Dawn Mission , 2011 .

[31]  S. Maurice,et al.  Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars , 2011 .

[32]  R. Jaumann,et al.  Surface Composition of Vesta: Issues and Integrated Approach , 2011 .

[33]  D. Mittlefehldt,et al.  MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin , 2011 .

[34]  John S. Hendricks,et al.  MCNPX 2.7.0 extensions , 2011 .

[35]  T. Prettyman,et al.  K‐Th‐Ti systematics and new three‐component mixing model of HED meteorites: Prospective study for interpretation of gamma‐ray and neutron spectra for the Dawn mission , 2010 .

[36]  C. Russell,et al.  Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope , 2010 .

[37]  A. W. Beck,et al.  Diogenites as polymict breccias composed of orthopyroxenite and harzburgite , 2010 .

[38]  N. Moskovitz,et al.  A spectroscopic comparison of HED meteorites and V-type asteroids in the inner Main Belt , 2010, 1003.2580.

[39]  W. Feldman,et al.  Characterization of Mars' seasonal caps using neutron spectroscopy , 2009 .

[40]  J. Masarik,et al.  Cosmogenic nuclides in stony meteorites revisited , 2009 .

[41]  A. Yamaguchi,et al.  Evidence for K‐rich terranes on Vesta from impact spherules , 2009 .

[42]  E. Maroon,et al.  Magma Ocean Solidification Processes on Vesta , 2008 .

[43]  Angioletta Coradini,et al.  Dawn Mission to Vesta and Ceres , 2007 .

[44]  T. Ntaflos,et al.  Foreign meteoritic material of howardites and polymict eucrites , 2007 .

[45]  R. Reedy,et al.  Theoretical fluxes of gamma rays from the Martian surface , 2007 .

[46]  R. Reedy,et al.  Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution , 2007 .

[47]  J. Papike,et al.  Petrogenetic relationships between diogenites and olivine diogenites: Implications for magmatism on the HED parent body , 2007 .

[48]  William V. Boynton,et al.  Mars' atmospheric argon: Tracer for understanding Martian atmospheric circulation and dynamics , 2007 .

[49]  H. McSween,et al.  Geochemistry of 4 Vesta based on HED meteorites: Prospective study for interpretation of gamma ray and neutron spectra for the Dawn mission , 2007 .

[50]  Thomas H. Prettyman,et al.  Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector , 2006 .

[51]  Thomas H. Prettyman,et al.  Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles , 2006 .

[52]  W. Feldman,et al.  MCNPX benchmark for cosmic ray interactions with the Moon , 2006 .

[53]  Kalevi Mursula,et al.  Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004 , 2005 .

[54]  S. Mashnik,et al.  CEM03 and LAQGSM03?new modeling tools for nuclear applications , 2005, nucl-th/0510070.

[55]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[56]  Thomas H. Prettyman,et al.  Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission , 2004 .

[57]  S. Maurice,et al.  Reduction of neutron data from Lunar Prospector , 2004 .

[58]  Richard D. Starr,et al.  Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy , 2004 .

[59]  Christopher T. Russell,et al.  Gamma-ray and neutron spectrometer for the Dawn mission to 1 Ceres and 4 Vesta , 2003 .

[60]  Robert L. Tokar,et al.  Mars odyssey neutron sensing of the south residual polar cap , 2003 .

[61]  M. Zuber,et al.  CO2 Snow Depth and Subsurface Water-Ice Abundance in the Northern Hemisphere of Mars , 2003, Science.

[62]  Paul G. Lucey,et al.  Iron abundances on the lunar surface as measured by the Lunar Prospector gamma‐ray and neutron spectrometers , 2002 .

[63]  Robert L. Tokar,et al.  Ice concentration and distribution near the south pole of Mars: Synthesis of odyssey and global surveyor analyses , 2002 .

[64]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[65]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[66]  Paul G. Lucey,et al.  Lunar Prospector neutron spectrometer constraints on TiO2 , 2002 .

[67]  Klaus Keil,et al.  Geological History of Asteroid 4 Vesta: The "Smallest Terrestrial Planet" , 2002 .

[68]  Thomas H. Prettyman,et al.  Composition from fast neutrons: Application to the Moon , 2001 .

[69]  Richard P. Binzel,et al.  Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences , 2001 .

[70]  Thomas H. Prettyman,et al.  Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons , 2001 .

[71]  F. Vilas,et al.  Vesta and the Vestoids: A New Rock Group? , 2000 .

[72]  Alan B. Binder,et al.  Chemical information content of lunar thermal and epithermal neutrons , 2000 .

[73]  Thomas H. Prettyman,et al.  Thorium abundances on the lunar surface , 2000 .

[74]  Paul G. Lucey,et al.  Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations , 2000 .

[75]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[76]  S. Maurice,et al.  Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. , 1998, Science.

[77]  Paul G. Lucey,et al.  Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery , 1998 .

[78]  L. Taylor,et al.  Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large‐scale differentiation , 1997 .

[79]  Kevin Righter,et al.  A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .

[80]  Richard P. Binzel,et al.  Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results , 1997 .

[81]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[82]  R. Reedy,et al.  Gamma ray production and transport in Mars , 1996 .

[83]  M. Zolensky,et al.  Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon , 1996 .

[84]  M. Gaffey,et al.  Geologic Mapping of Vesta from 1994 Hubble Space Telescope Images , 1995 .

[85]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[86]  R. Reedy,et al.  Lunar neutron leakage fluxes as a function of composition and hydrogen content , 1991 .

[87]  G. Consolmagno,et al.  Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts] , 1977 .

[88]  A. F. Henry,et al.  Nuclear Reactor Analysis , 1975, IEEE Transactions on Nuclear Science.

[89]  Richard E. Lingenfelter,et al.  The lunar neutron flux revisited , 1972 .

[90]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[91]  Richard E. Lingenfelter,et al.  The lunar neutron flux , 1961 .

[92]  Andreas Nathues,et al.  Photometric, spectral phase and temperature effects on 4 Vesta and HED meteorites: Implications for the Dawn mission , 2012 .

[93]  S. Maurice,et al.  Sensitivity of orbital neutron measurements to the thickness and abundance of surficial lunar water , 2011 .

[94]  T. Prettyman CHAPTER 41 – Remote Chemical Sensing Using Nuclear Spectroscopy , 2007 .

[95]  W. Boynton,et al.  Comparison between polar regions of Mars from HEND/Odyssey data , 2006 .

[96]  H. Haack,et al.  Iron and Stony-Iron Meteorites , 2005 .

[97]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[98]  J. F. Briesmeister MCNP-A General Monte Carlo N-Particle Transport Code , 1993 .

[99]  Deepak Lal,et al.  Theoretically expected variations in the terrestrial cosmic-ray production rates of isotopes , 1988 .

[100]  D. Lal,et al.  Solar Modulation Effects in Terrestrial Production of Carbon-14 , 1980, Radiocarbon.

[101]  G. Goleš,et al.  A re-examination of relationships among pyroxene-plagioclase achondrites. , 1971 .