Automotive Applications of Thermoelectric Materials

This report reviews several existing and potential automotive applications of thermoelectric technology. Material and device issues related to automotive applications are discussed. Challenges for automotive thermoelectric applications are highlighted.

[1]  F. Ren,et al.  Characterization of dry milled powders of LAST (lead–antimony–silver–tellurium) thermoelectric material , 2007 .

[2]  K. Koumoto,et al.  Complex Oxide Materials for Potential Thermoelectric Applications , 2006 .

[3]  Kazuo T. Nakamura,et al.  High-Temperature Thermoelectric Properties of NaxCoO2-δ Single Crystals , 2001 .

[4]  Phillip Sharer,et al.  Fuel Economy Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains , 2006 .

[5]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[6]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[7]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[8]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[9]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[10]  K. Matsubara The Performance of a Segmented Thermoelectric Convertor Using Yb-Based Filled Skutterudites and Bi 2 Te 3 -Based Materials , 2001 .

[11]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[12]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[13]  Mohamed S. El-Genk,et al.  Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples , 2006 .

[14]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[15]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[16]  H. Schock,et al.  Weibull analysis of the biaxial fracture strength of a cast p-type LAST-T thermoelectric material , 2006 .

[17]  Tsunehiro Takeuchi,et al.  An Oxide Single Crystal with High Thermoelectric Performance in Air , 2000 .

[18]  Z. Dashevsky,et al.  Mechanical properties of PbTe-based thermoelectric semiconductors , 2008 .

[19]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12Ba0.3Co4Sb12 doped with Ni , 2002 .

[20]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[21]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[22]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[23]  Jihui Yang,et al.  Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce and Sr) , 2007 .

[24]  G. L. Trigg,et al.  Encyclopedia of Applied Physics , 1994 .

[25]  M. P. Walsh,et al.  Nanostructured thermoelectric materials , 2005 .

[26]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[27]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[28]  Ctirad Uher,et al.  Chapter 5 Skutterudites: Prospective novel thermoelectrics , 2001 .

[29]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.