Drag-based composite super-twisting sliding mode control law design for Mars entry guidance

Abstract In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.

[1]  Yu-Ping Tian,et al.  Finite-time stability of cascaded time-varying systems , 2007, Int. J. Control.

[2]  Shengying Zhu,et al.  Observability-Based Beacon Configuration Optimization for Mars Entry Navigation , 2015 .

[3]  Hutao Cui,et al.  Proposal for a multiple-asteroid-flyby mission with sample return , 2012 .

[4]  Wei Xing Zheng,et al.  Composite predictive flight control for airbreathing hypersonic vehicles , 2014, Int. J. Control.

[5]  Yuanqing Xia,et al.  Active disturbance rejection control for drag tracking in mars entry guidance , 2014 .

[6]  Shuang Li,et al.  Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry , 2012 .

[7]  R. Manning,et al.  Mars Exploration Entry, Descent, and Landing Challenges , 2007 .

[8]  Xiuqiang Jiang,et al.  RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties , 2015 .

[9]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[10]  Leonid M. Fridman,et al.  Super twisting control algorithm for the attitude tracking of a four rotors UAV , 2012, J. Frankl. Inst..

[11]  C. A. Kluever,et al.  Entry Guidance Performance for Mars Precision Landing , 2008 .

[12]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[13]  Yuri B. Shtessel,et al.  Advances in Guidance and Control of Aerospace Vehicles using Sliding Mode Control and Observation Techniques , 2012, Journal of the Franklin Institute.

[14]  S. Bharadwaj,et al.  ENTRY TRAJECTORY TRACKING LAW VIA FEEDBACK LINEARIZATION , 1998 .

[15]  Amitabh Saraf,et al.  Design and Evaluation of an Acceleration Guidance Algorithm for Entry , 2004 .

[16]  Yuanqing Xia,et al.  Mars atmospheric entry guidance for reference trajectory tracking , 2015 .

[17]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[18]  Jun Yang,et al.  Disturbance Observer-Based Control: Methods and Applications , 2014 .

[19]  Xinghuo Yu,et al.  High-Order Mismatched Disturbance Compensation for Motion Control Systems Via a Continuous Dynamic Sliding-Mode Approach , 2014, IEEE Transactions on Industrial Informatics.

[20]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[21]  Hao-Chi Chang,et al.  Sliding mode control on electro-mechanical systems , 1999 .

[22]  Joel Benito,et al.  Nonlinear Predictive Controller for Drag Tracking in Entry Guidance , 2008 .

[23]  R. Prakash,et al.  Mars Science Laboratory entry guidance improvements study for the Mars 2018 mission , 2012, 2012 IEEE Aerospace Conference.

[24]  Yuanqing Xia,et al.  Mars entry guidance based on segmented guidance predictor–corrector algorithm , 2015 .

[25]  Kenneth D. Mease,et al.  Reduced-Order Entry Trajectory Planning for Acceleration Guidance , 2002 .

[26]  Qun Zong,et al.  Brief paper: Higher order sliding mode control with self-tuning law based on integral sliding mode , 2010 .

[27]  Michael V. Basin,et al.  A Supertwisting Algorithm for Systems of Dimension More Than One , 2014, IEEE Transactions on Industrial Electronics.

[28]  Kuang-Yang Tu,et al.  Drag-Based Predictive Tracking Guidance for Mars Precision Landing , 1998 .