What the cerebellum computes

[1]  I. Gormezano,et al.  CONDITIONING OF THE NICTITATING MEMBRANE OF THE RABBIT AS A FUNCTION OF CS-US INTERVAL. , 1964, Journal of comparative and physiological psychology.

[2]  M Ito,et al.  Neurophysiological aspects of the cerebellar motor control system. , 1970, International journal of neurology.

[3]  J. R. Millenson,et al.  Classical conditioning of the rabbit's nictitating membrane response under fixed and mixed CS-US intervals , 1977 .

[4]  F. A. Miles,et al.  Plasticity in the vestibulo-ocular reflex: a new hypothesis. , 1981, Annual review of neuroscience.

[5]  R. F. Thompson,et al.  Cerebellum: essential involvement in the classically conditioned eyelid response. , 1984, Science.

[6]  R. F. Thompson,et al.  Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. F. Thompson,et al.  Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus , 1989, Synapse.

[8]  M. Kawato,et al.  The cerebellum and VOR/OKR learning models , 1992, Trends in Neurosciences.

[9]  M. Mauk,et al.  Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals. , 1992, Behavioral neuroscience.

[10]  A. L. Leiner,et al.  Cognitive and language functions of the human cerebellum , 1993, Trends in Neurosciences.

[11]  M. Mauk,et al.  Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  A. Fuchs,et al.  Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. , 1993, Journal of neurophysiology.

[13]  A. Fuchs,et al.  Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. , 1993, Journal of neurophysiology.

[14]  S. Lisberger,et al.  Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus. , 1994, Journal of neurophysiology.

[15]  Dean V. Buonomano,et al.  Neural Network Model of the Cerebellum: Temporal Discrimination and the Timing of Motor Responses , 1999, Neural Computation.

[16]  M. Mauk,et al.  Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  S. Lisberger,et al.  The Cerebellum: A Neuronal Learning Machine? , 1996, Science.

[18]  N. Donegan,et al.  A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. , 1997, Learning & memory.

[19]  R. Kettner,et al.  Predictive smooth pursuit of complex two-dimensional trajectories demonstrated by perturbation responses in monkeys , 1997, Vision Research.

[20]  A G Barto,et al.  Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. , 1997, Journal of neurophysiology.

[21]  S. Lisberger,et al.  Neural Learning Rules for the Vestibulo-Ocular Reflex , 1998, The Journal of Neuroscience.

[22]  M. Mauk,et al.  Cerebellar Cortex Lesions Prevent Acquisition of Conditioned Eyelid Responses , 1999, The Journal of Neuroscience.

[23]  M. Mauk,et al.  Simulations of Cerebellar Motor Learning: Computational Analysis of Plasticity at the Mossy Fiber to Deep Nucleus Synapse , 1999, The Journal of Neuroscience.

[24]  Javier F. Medina,et al.  Timing Mechanisms in the Cerebellum: Testing Predictions of a Large-Scale Computer Simulation , 2000, The Journal of Neuroscience.

[25]  M. Mauk,et al.  Cerebellar function: Coordination, learning or timing? , 2000, Current Biology.

[26]  Javier F. Medina,et al.  Computer simulation of cerebellar information processing , 2000, Nature Neuroscience.

[27]  M. Mauk,et al.  Mechanisms of cerebellar learning suggested by eyelid conditioning , 2000, Current Opinion in Neurobiology.

[28]  D. Linden,et al.  Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons , 2000, Nature Neuroscience.

[29]  M. Mauk,et al.  Latent Acquisition of Timed Responses in Cerebellar Cortex , 2001, The Journal of Neuroscience.

[30]  M. Mauk,et al.  A Mechanism for Savings in the Cerebellum , 2001, The Journal of Neuroscience.

[31]  M. Mauk,et al.  Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses , 2002, Nature.

[32]  John H Freeman,et al.  Synapse formation is associated with memory storage in the cerebellum , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Richard F. Thompson,et al.  Cerebellar cortical inhibition and classical eyeblink conditioning , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Megan R. Carey,et al.  Embarrassed, but Not Depressed Eye Opening Lessons for Cerebellar Learning , 2002, Neuron.

[35]  Jane E. Johnson,et al.  Specification of dorsal spinal cord interneurons , 2003, Current Opinion in Neurobiology.

[36]  D. Wegner The mind's best trick: how we experience conscious will , 2003, Trends in Cognitive Sciences.

[37]  C. Frith,et al.  Functional imaging of ‘theory of mind’ , 2003, Trends in Cognitive Sciences.

[38]  A. A. Parsons,et al.  The neuronal versus vascular hypothesis of migraine and cortical spreading depression. , 2003, Current opinion in pharmacology.

[39]  Garrett T. Kenyon,et al.  A Mathematical Model of the Cerebellar-Olivary System I: Self-Regulating Equilibrium of Climbing Fiber Activity , 1998, Journal of Computational Neuroscience.

[40]  J. W. Moore,et al.  Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits , 2004, Experimental Brain Research.

[41]  R. Kettner,et al.  Predictive smooth pursuit of complex two-dimensional trajectories in monkey: component interactions , 1996, Experimental Brain Research.