Progressive point set surfaces

Progressive point set surfaces (PPSS) are a multilevel point-based surface representation. They combine the usability of multilevel scalar displacement maps (e.g., compression, filtering, geometric modeling) with the generality of point-based surface representations (i.e., no fixed homology group or continuity class). The multiscale nature of PPSS fosters the idea of point-based modeling. The basic building block for the construction of PPSS is a projection operator, which maps points in the proximity of the shape onto local polynomial surface approximations. The projection operator allows the computing of displacements from smoother to more detailed levels. Based on the properties of the projection operator we derive an algorithm to construct a base point set. Starting from this base point set, a refinement rule using the projection operator constructs a PPSS from any given manifold surface.

[1]  Jihad El-Sana,et al.  Generalized View‐Dependent Simplification , 1999, Comput. Graph. Forum.

[2]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[3]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[4]  Hans-Peter Seidel,et al.  A General Framework for Mesh Decimation , 1998, Graphics Interface.

[5]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[6]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[7]  Jihad El-Sana,et al.  Adaptive Real-Time Level-of-Detail-Based Rendering for Polygonal Models , 1997, IEEE Trans. Vis. Comput. Graph..

[8]  Marc Levoy,et al.  Texture synthesis over arbitrary manifold surfaces , 2001, SIGGRAPH.

[9]  Paolo Cignoni,et al.  Multiresolution decimation based on global error , 1996, The Visual Computer.

[10]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[11]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[12]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[13]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[14]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[15]  Hans-Peter Seidel,et al.  Multiresolution Shape Deformations for Meshes with Dynamic Vertex Connectivity , 2000, Comput. Graph. Forum.

[16]  Mark A. Duchaineau,et al.  ROAMing terrain: real-time optimally adapting meshes , 1997 .

[17]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[18]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[19]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[20]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[21]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[22]  Cohen-OrDaniel,et al.  Progressive point set surfaces , 2003 .

[23]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[24]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[25]  Mark A. Duchaineau,et al.  ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[26]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[27]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[28]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[29]  Peter Schröder,et al.  A multiresolution framework for variational subdivision , 1998, TOGS.

[30]  Leif Kobbelt,et al.  Simplification and Compression of 3D Meshes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[31]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[32]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[33]  Markus H. Gross,et al.  Spectral processing of point-sampled geometry , 2001, SIGGRAPH.

[34]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[35]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[36]  Amitabh Varshney,et al.  Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..

[37]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[38]  Leila De Floriani,et al.  Multiresolution modeling and visualization of volume data based on simplicial complexes , 1994, VVS '94.

[39]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[40]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[41]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[42]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[43]  Greg Turk,et al.  Texture synthesis on surfaces , 2001, SIGGRAPH.

[44]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[45]  William J. Dally,et al.  Point Sample Rendering , 1998, Rendering Techniques.

[46]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[47]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[48]  Lars Linsen,et al.  Point cloud representation , 2001 .

[49]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[50]  Amitabh Varshney,et al.  Differential Point Rendering , 2001, Rendering Techniques.

[51]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[52]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.