Combinatorial markets in theory and practice: mitigating incentives and facilitating elicitation

Strategyproof mechanisms provide robust equilibria with minimal assumptions about knowledge and rationality, but can be unachievable in combination with other desirable properties, such as budget-balance, stability against deviations by coalitions, and computational tractability. We thus seek a relaxation of this solution concept, and propose several definitions for general settings with private and quasi-linear utility. We are then able to describe the ideal mechanism according to these definitions by formulating the design problem as a constrained optimization problem. Discretization and statistical sampling allow us to reify this problem as a linear program to find ideal mechanisms in simple settings. However, this constructive approach is not scalable. We thus advocate for using the quantiles of the ex post unilateral gain from deviation as a method for capturing useful information about the incentives in a mechanism. Where this also is too expensive, we propose using the KL-Divergence between the payoff distribution at truthful reports and the distribution under a strategyproof "reference" mechanism that solves a problem relaxation. We prove bounds that relate such quasimetrics to our definitions of approximate incentive compatibility; we demonstrate empirically in combinatorial market settings that they are informative about the eventual equilibrium, where simple regret-based metrics are not. We then design, implement, and analyze a mechanism for just such an overconstrained setting: the first fully expressive, iterative combinatorial exchange (ICE). The exchange incorporates a tree-based bidding language (TBBL) that is concise and expressive for CEs. Bidders specify lower and upper bounds in TBBL on their value for different, trades and refine these bounds across rounds. A proxied interpretation of a revealed-preference activity rule, coupled with simple linear prices, ensures progress across rounds. We are able to prove efficiency under truthful bidding despite using linear pricing that can only approximate competitive equilibrium. Finally, we apply several key concepts from this general mechanism in a combinatorial market for finding the right balance between power and performance in allocating computational resources in a data center.

[1]  Parag A. Pathak,et al.  School Admissions Reform in Chicago and England: Comparing Mechanisms by Their Vulnerability to Manipulation. NBER Working Paper No. 16783. , 2011 .

[2]  S. Muthukrishnan,et al.  Ad Exchanges: Research Issues , 2009, WINE.

[3]  Tuomas Sandholm,et al.  Approximating Revenue-Maximizing Combinatorial Auctions , 2005, AAAI.

[4]  Amin Vahdat,et al.  SHARP: an architecture for secure resource peering , 2003, SOSP '03.

[5]  David C. Parkes,et al.  An Ascending-Price Generalized Vickrey Auction , 2002 .

[6]  E. Maasland,et al.  Auction Theory , 2021, Springer Texts in Business and Economics.

[7]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[8]  David C. Parkes,et al.  More on the Power of Demand Queries in Combinatorial Auctions: Learning Atomic Languages and Handling Incentives , 2005, IJCAI.

[9]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[10]  Andrew Byde,et al.  A Comparison Between Mechanisms for Sequential Compute Resource Auctions , 2006, Negotiation, Auctions, and Market Engineering.

[11]  Rajkumar Buyya,et al.  A taxonomy of market-based resource management systems for utility-driven cluster computing , 2006 .

[12]  David C. Parkes,et al.  Ascending Price Vickrey Auctions for General Valuations , 2005, J. Econ. Theory.

[13]  M. Jackson,et al.  Strategy-Proof Exchange , 1995 .

[14]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[15]  S. Raghavan,et al.  Fair Payments for Efficient Allocations in Public Sector Combinatorial Auctions , 2007, Manag. Sci..

[16]  David C. Parkes,et al.  When Analysis Fails: Heuristic Mechanism Design via Self-correcting Procedures , 2009, SOFSEM.

[17]  Karla Hoffman,et al.  Market-Based Alternatives for Managing Congestion at New York’s LaGuardia Airport , 2007 .

[18]  M. Ball,et al.  Auctions for the Safe, Efficient and Equitable Allocation of Airspace System Resources , 2003 .

[19]  Éva Tardos,et al.  An approximate truthful mechanism for combinatorial auctions with single parameter agents , 2003, SODA '03.

[20]  David C. Parkes,et al.  Iterative combinatorial auctions: achieving economic and computational efficiency , 2001 .

[21]  Nidhi Kalra,et al.  Market-Based Multirobot Coordination: A Survey and Analysis , 2006, Proceedings of the IEEE.

[22]  Bengt Holmstrom,et al.  GROVES' SCHEME ON RESTRICTED DOMAINS , 1979 .

[23]  Tuomas Sandholm,et al.  Mechanism for Optimally Trading Off Revenue and Efficiency in Multi-unit Auctions , 2003, AMEC.

[24]  Yoav Shoham,et al.  A Test Suite for Combinatorial Auctions , 2005 .

[25]  Vincent Conitzer,et al.  Optimal-in-expectation redistribution mechanisms , 2010, Artif. Intell..

[26]  David C. Parkes,et al.  Preventing Strategic Manipulation in Iterative Auctions: Proxy Agents and Price-Adjustment , 2000, AAAI/IAAI.

[27]  Makoto Yokoo,et al.  The effect of false-name bids in combinatorial auctions: new fraud in internet auctions , 2004, Games Econ. Behav..

[28]  Jerry R. Green,et al.  Characterization of Satisfactory Mechanisms for the Revelation of Preferences for Public Goods , 1977 .

[29]  Sushil Bikhchandani,et al.  The Package Assignment Model , 2002, J. Econ. Theory.

[30]  Eric Budish The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes , 2011, Journal of Political Economy.

[31]  Zuo-Jun Max Shen,et al.  Truthful Double Auction Mechanisms , 2008, Oper. Res..

[32]  Andrew B. Whinston,et al.  Design of a financial portal , 2001, CACM.

[33]  Vincent Conitzer,et al.  Automated mechanism design: complexity results stemming from the single-agent setting , 2003, ICEC '03.

[34]  S. Bikhchandani,et al.  Competitive Equilibrium in an Exchange Economy with Indivisibilities , 1997 .

[35]  Vincent Conitzer,et al.  Computationally Feasible Automated Mechanism Design: General Approach and Case Studies , 2010, AAAI.

[36]  David C. Parkes,et al.  Achieving Budget-Balance with Vickrey-Based Payment Schemes in Exchanges , 2001, IJCAI.

[37]  David C. Parkes,et al.  On Revenue-Optimal Dynamic Auctions for Bidders with Interdependent Values , 2007, AMEC/TADA.

[38]  R. Nelsen An Introduction to Copulas , 1998 .

[39]  M. Satterthwaite,et al.  Efficient Mechanisms for Bilateral Trading , 1983 .

[40]  Noam Nisan,et al.  Computationally feasible VCG mechanisms , 2000, EC '00.

[41]  David C. Parkes,et al.  Auction design with costly preference elicitation , 2005, Annals of Mathematics and Artificial Intelligence.

[42]  Lawrence M. Ausubel,et al.  The Lovely but Lonely Vickrey Auction , 2004 .

[43]  R. McAfee,et al.  A dominant strategy double auction , 1992 .

[44]  David C. Parkes,et al.  Optimal Auction Design for Agents with Hard Valuation Problems , 1999, Agent Mediated Electronic Commerce.

[45]  Amin Vahdat,et al.  Managing energy and server resources in hosting centers , 2001, SOSP.

[46]  Anshul Kothar,et al.  Approximately-strategyproof and tractable multi-unit auctions , 2003 .

[47]  Tad Hogg,et al.  Spawn: A Distributed Computational Economy , 1992, IEEE Trans. Software Eng..

[48]  R. Vohra,et al.  Algorithmic Game Theory: Sponsored Search Auctions , 2007 .

[49]  Tuomas Sandholm Expressive Commerce and Its Application to Sourcing: How We Conducted $35 Billion of Generalized Combinatorial Auctions , 2007, AI Mag..

[50]  L. Shapley,et al.  The assignment game I: The core , 1971 .

[51]  Noam Nisan,et al.  The POPCORN market. Online markets for computational resources , 2000, Decis. Support Syst..

[52]  David C. Parkes,et al.  Chain: A Dynamic Double Auction Framework for Matching Patient Agents , 2007, J. Artif. Intell. Res..

[53]  Michael P. Wellman,et al.  AkBA: a progressive, anonymous-price combinatorial auction , 2000, EC '00.

[54]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[55]  Maja J. Mataric,et al.  Sold!: auction methods for multirobot coordination , 2002, IEEE Trans. Robotics Autom..

[56]  Michael H. Rothkopf,et al.  Thirteen Reasons Why the Vickrey-Clarke-Groves Process Is Not Practical , 2007, Oper. Res..

[57]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[58]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[59]  Vincent Conitzer,et al.  Computational aspects of preference aggregation , 2006 .

[60]  Vincent Conitzer,et al.  Worst-case optimal redistribution of VCG payments in multi-unit auctions , 2009, Games Econ. Behav..

[61]  Andrey I. Kibzun,et al.  Stochastic Programming Problems with Probability and Quantile Functions , 1996 .

[62]  Michael P. Wellman,et al.  Empirical mechanism design: methods, with application to a supply-chain scenario , 2006, EC '06.

[63]  Steven R. Williams A characterization of efficient, bayesian incentive compatible mechanisms , 1999 .

[64]  Aytek Erdil,et al.  A New Payment Rule for Core-Selecting Package Auctions , 2009 .

[65]  Michael P. Wellman,et al.  Stochastic Search Methods for Nash Equilibrium Approximation in Simulation-based Games , 2022 .

[66]  Benjamin F. Hobbs,et al.  Efficient market-clearing prices in markets with nonconvexities , 2005, Eur. J. Oper. Res..

[67]  Michael O. Ball,et al.  Slot Trading Opportunities in Collaborative Ground Delay Programs , 2006, Transp. Sci..

[68]  Bernard J. Jansen,et al.  Sponsored search: an overview of the concept, history, and technology , 2008, Int. J. Electron. Bus..

[69]  Noam Nisan,et al.  Bidding Languages for Combinatorial Auctions , 2005 .

[70]  Vincent Conitzer,et al.  Failures of the VCG mechanism in combinatorial auctions and exchanges , 2006, AAMAS '06.

[71]  Peter Cramton,et al.  Electricity market design: the good, the bad, and the ugly , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.

[72]  Parag A. Pathak,et al.  The New York City High School Match , 2005 .

[73]  Y. Shoham,et al.  Towards a Universal Test Suite forCombinatorial Au tion , 2000 .

[74]  Tuomas Sandholm,et al.  Preference elicitation in combinatorial auctions , 2001, AAMAS '02.

[75]  Paul Milgrom,et al.  Putting Auction Theory to Work , 2004 .

[76]  L. S. Shapley,et al.  Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts , 1979, Math. Oper. Res..

[77]  Craig Boutilier,et al.  Solving concisely expressed combinatorial auction problems , 2002, AAAI/IAAI.

[78]  Anthony M. Kwasnica,et al.  A New and Improved Design for Multiobject Iterative Auctions , 2005, Manag. Sci..

[79]  Rajkumar Buyya,et al.  Market-oriented Grids and Utility Computing: The State-of-the-art and Future Directions , 2008, Journal of Grid Computing.

[80]  Trey Smith,et al.  Constructing and Clearing Combinatorial Exchanges Using Preference Elicitation , 2002 .

[81]  Avrim Blum,et al.  Online algorithms for market clearing , 2002, SODA '02.

[82]  Moshe Babaioff,et al.  Incentive-compatible, budget-balanced, yet highly efficient auctions for supply chain formation , 2003, EC '03.

[83]  E. H. Clarke Multipart pricing of public goods , 1971 .

[84]  Eric Budish,et al.  The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes , 2010, Journal of Political Economy.

[85]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[86]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[87]  Paul Milgrom,et al.  Package Auctions and Package Exchanges: the 2004 Fisher-Schultz Lecture , 2006 .

[88]  Subhash Suri,et al.  Approximately-strategyproof and tractable multi-unit auctions , 2003, EC '03.

[89]  Ruggiero Cavallo,et al.  Optimal decision-making with minimal waste: strategyproof redistribution of VCG payments , 2006, AAMAS '06.

[90]  R. Myerson Incentive Compatibility and the Bargaining Problem , 1979 .

[91]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Paul Milgrom,et al.  Core-selecting package auctions , 2008, Int. J. Game Theory.

[93]  Michael P. Wellman,et al.  Computing Best-Response Strategies in Infinite Games of Incomplete Information , 2004, UAI.

[94]  Michael P. Wellman,et al.  Constrained automated mechanism design for infinite games of incomplete information , 2007, Autonomous Agents and Multi-Agent Systems.

[95]  C. Villani Optimal Transport: Old and New , 2008 .

[96]  Vincent Conitzer,et al.  Coalitional Games in Open Anonymous Environments , 2005, IJCAI.

[97]  V. Crawford,et al.  Job Matching, Coalition Formation, and Gross Substitutes , 1982 .

[98]  Sébastien Lahaie,et al.  Stability and Incentive Compatibility in a Kernel-Based Combinatorial Auction , 2010, AAAI.

[99]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[100]  Makoto Yokoo Pseudonymous Bidding in Combinatorial Auctions , 2005 .

[101]  Peter Cramton,et al.  Efficient Relocation of Spectrum Incumbents* , 1998, The Journal of Law and Economics.

[102]  Peter Cramton,et al.  The Quadratic Core-Selecting Payment Rule for Combinatorial Auctions , 2008 .

[103]  D. Schmeidler The Nucleolus of a Characteristic Function Game , 1969 .

[104]  Vincent Conitzer,et al.  Self-interested automated mechanism design and implications for optimal combinatorial auctions , 2004, EC '04.

[105]  Vincent Conitzer,et al.  Complexity of Mechanism Design , 2002, UAI.

[106]  David C. Parkes,et al.  Applying learning algorithms to preference elicitation , 2004, EC '04.

[107]  Lawrence M. Ausubel,et al.  The Clock-Proxy Auction: A Practical Combinatorial Auction Design , 2004 .

[108]  John E. Walsh,et al.  Generally Applicable N-Person Percentile Game Theory for Case of Independently Chosen Strategies. , 1970 .

[109]  T. Sandholm,et al.  Applications of Automated Mechanism Design , 2003 .

[110]  Lawrence M. Ausubel,et al.  Ascending Auctions with Package Bidding , 2002 .

[111]  H. de Vries,et al.  Quantile criteria for the selection of strategies in game theory , 1974 .

[112]  Ivan E. Sutherland,et al.  A futures market in computer time , 1968, Commun. ACM.

[113]  Sven de Vries,et al.  On ascending Vickrey auctions for heterogeneous objects , 2007, J. Econ. Theory.

[114]  David S. Evans The Online Advertising Industry: Economics, Evolution, and Privacy , 2009 .

[115]  Tuomas Sandholm eMediator: A Next Generation Electronic Commerce Server , 2002, Comput. Intell..

[116]  Tuomas Sandholm,et al.  Issues in Computational Vickrey Auctions , 2000, Int. J. Electron. Commer..

[117]  Vincent Conitzer,et al.  Computational criticisms of the revelation principle , 2004, EC '04.

[118]  Jeffrey O. Kephart,et al.  Coordinated management of power usage and runtime performance , 2008, NOMS 2008 - 2008 IEEE Network Operations and Management Symposium.

[119]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[120]  S. Rassenti,et al.  A Combinatorial Auction Mechanism for Airport Time Slot Allocation , 1982 .

[121]  Craig Boutilier,et al.  Bidding Languages for Combinatorial Auctions , 2001, IJCAI.

[122]  Tuomas Sandholm,et al.  Methods for Boosting Revenue in Combinatorial Auctions , 2004, AAAI.

[123]  David C. Parkes,et al.  Iterative Combinatorial Auctions: Theory and Practice , 2000, AAAI/IAAI.

[124]  Tuomas Sandholm,et al.  Effectiveness of query types and policies for preference elicitation in combinatorial auctions , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[125]  P. Cramton Simultaneous Ascending Auctions , 2004 .

[126]  Claudio Bartolini,et al.  Towards Agent-Based Service Composition through Negotiation in Multiple Auctions , 2001 .

[127]  Donald F. Ferguson,et al.  Economic models for allocating resources in computer systems , 1996 .

[128]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[129]  Ronald M. Harstad,et al.  Computationally Manageable Combinational Auctions , 1998 .

[130]  Tuomas Sandholm,et al.  An Implementation of the Contract Net Protocol Based on Marginal Cost Calculations , 1993, AAAI.

[131]  J. Schummer Almost-dominant Strategy Implementation , 1999 .

[132]  Peter R. Wurman,et al.  Equilibrium Prices in Bundle Auctions , 1999 .

[133]  Yoav Shoham,et al.  Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.

[134]  Tuomas Sandholm,et al.  Better with Byzantine: Manipulation-Optimal Mechanisms , 2009, SAGT.

[135]  M. Rostek Quantile Maximization in Decision Theory , 2009 .

[136]  P. Jehiel,et al.  Auctions and Information acquisition: Sealed-bid or Dynamic Formats? , 2007 .

[137]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[138]  David C. Parkes,et al.  Achieving Budget-Balance with Vickrey-Based Payment Schemes in Combinatorial Exchanges , 2001 .

[139]  Sebastian Thrun,et al.  Auction Mechanism Design for Multi-Robot Coordination , 2003, NIPS.

[140]  Vincent Conitzer,et al.  Incremental Mechanism Design , 2007, IJCAI.

[141]  Luc Devroye,et al.  Non-Uniform Random Variate Generation , 1986 .

[142]  Anand Sivasubramaniam,et al.  Managing server energy and operational costs in hosting centers , 2005, SIGMETRICS '05.

[143]  Jeffrey S. Rosenschein,et al.  Mechanism Design for Automated Negotiation, and its Application to Task Oriented Domains , 1996, Artif. Intell..

[144]  Sven de Vries,et al.  Combinatorial Auctions: A Survey , 2003, INFORMS J. Comput..

[145]  Tuomas Sandholm,et al.  Optimal Winner Determination Algorithms , 2005 .

[146]  Claudio Bartolini,et al.  Market-Based Resource Allocation for Utility Data Centers , 2003 .

[147]  Rajarshi Das,et al.  Achieving Self-Management via Utility Functions , 2007, IEEE Internet Computing.