Embryonic liver developmental trajectory revealed by single-cell RNA sequencing in the Foxa2eGFP mouse

[1]  Fei Gao,et al.  CNSA: a data repository for archiving omics data , 2020, bioRxiv.

[2]  Deanna M. Church,et al.  The emergent landscape of the mouse gut endoderm at single-cell resolution , 2019, Nature.

[3]  J. Marioni,et al.  A single-cell molecular map of mouse gastrulation and early organogenesis , 2019, Nature.

[4]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[5]  Sheng Chen,et al.  Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data , 2018, GigaScience.

[6]  Jian Wang,et al.  SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data , 2017, GigaScience.

[7]  Ze-Guang Han,et al.  Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development , 2017, BMC Genomics.

[8]  Li Yang,et al.  A single‐cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation , 2017, Hepatology.

[9]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[10]  Hui Jiang,et al.  A reference human genome dataset of the BGISEQ-500 sequencer , 2017, GigaScience.

[11]  Jinyang Zhao,et al.  Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q , 2017, GigaScience.

[12]  Sarah C. Ayling,et al.  The Ensembl gene annotation system , 2016, Database J. Biol. Databases Curation.

[13]  K. Kaestner,et al.  The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation. , 2016, Molecular cell.

[14]  J. Han,et al.  Spatial Transcriptome for the Molecular Annotation of Lineage Fates and Cell Identity in Mid-gastrula Mouse Embryo. , 2016, Developmental cell.

[15]  Huanming Yang,et al.  Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells , 2015, GigaScience.

[16]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[17]  P. Jacquemin,et al.  Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. , 2015, Developmental biology.

[18]  T. Evans,et al.  Orchestrating liver development , 2015, Development.

[19]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[20]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[21]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[22]  Michael G. Constantinides,et al.  A committed hemopoietic precursor to innate lymphoid cells , 2014, Nature.

[23]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[24]  Wei Chen,et al.  Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence , 2013, Genes & development.

[25]  Yohei Saito,et al.  The septum transversum mesenchyme induces gall bladder development , 2013, Biology Open.

[26]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[27]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[28]  Y. Ishikawa,et al.  Dlk-1, a cell surface antigen on foetal hepatic stem/progenitor cells, is expressed in hepatocellular, colon, pancreas and breast carcinomas at a high frequency. , 2010, Journal of biochemistry.

[29]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[30]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[31]  A. Miyajima,et al.  Mouse hepatoblasts at distinct developmental stages are characterized by expression of EpCAM and DLK1: Drastic change of EpCAM expression during liver development , 2009, Mechanisms of Development.

[32]  K. Kaestner,et al.  Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. , 2009, Developmental cell.

[33]  K. Yamamura,et al.  Defective development of the gall bladder and cystic duct in Lgr4‐ hypomorphic mice , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[34]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[35]  S. Schneider-Maunoury,et al.  Crucial role of vHNF1 in vertebrate hepatic specification , 2008, Development.

[36]  J. I. Izpisúa Belmonte,et al.  Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression , 2008, Development.

[37]  K. Zaret Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation , 2008, Nature Reviews Genetics.

[38]  B. Cieply,et al.  β‐Catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development , 2008, Hepatology.

[39]  A. Zorn,et al.  Repression of Wnt/β-catenin signaling in the anterior endoderm is essential for liver and pancreas development , 2007, Development.

[40]  C. Croce,et al.  Fez1/Lzts1 absence impairs Cdk1/Cdc25C interaction during mitosis and predisposes mice to cancer development. , 2007, Cancer cell.

[41]  K. Zaret,et al.  Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. , 2006, Developmental biology.

[42]  Klaus H. Kaestner,et al.  The initiation of liver development is dependent on Foxa transcription factors , 2005, Nature.

[43]  S. Duncan,et al.  Embryonic development of the liver , 2005, Hepatology.

[44]  K. Zaret,et al.  Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. , 2005, Developmental biology.

[45]  S. Duncan,et al.  HNF4: A central regulator of hepatocyte differentiation and function , 2003, Hepatology.

[46]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[47]  G. Oliver,et al.  Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm , 2002, Mechanisms of Development.

[48]  A. Hart,et al.  Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. , 2002, Development.

[49]  Yoshiakira Kanai,et al.  Depletion of definitive gut endoderm in Sox17-null mutant mice. , 2002, Development.

[50]  B. Hogan,et al.  Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. , 2001, Genes & development.

[51]  C. Deng,et al.  Smad Proteins and Hepatocyte Growth Factor Control Parallel Regulatory Pathways That Converge on β1-Integrin To Promote Normal Liver Development , 2001, Molecular and Cellular Biology.

[52]  K. Zaret,et al.  Initiation of mammalian liver development from endoderm by fibroblast growth factors. , 1999, Science.

[53]  J. Rossant,et al.  The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. , 1998, Development.

[54]  J. R. Coleman,et al.  Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. , 1996, Genes & development.

[55]  R. Evans,et al.  RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. , 1994, Genes & development.

[56]  K. Kaestner,et al.  Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. , 1993, Development.

[57]  J. Rossant,et al.  Anterior mesendoderm induces mouse Engrailed genes in explant cultures. , 1993, Development.

[58]  B. Hogan,et al.  Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. , 1993, Development.

[59]  K. Kaestner,et al.  The Fox genes in the liver: from organogenesis to functional integration. , 2010, Physiological reviews.

[60]  Geoffrey E. Hinton,et al.  Melting of Peridotite to 140 Gigapascals , 2010, Science.

[61]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[62]  J. C. Belmonte,et al.  Tbx 3 controls the fate of hepatic progenitor cells in liver development by suppressing p 19 ARF expression , 2022 .