A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens

Abstract The Altaids is one of the largest accretionary collages in the world, and the tectonic styles of the accretionary processes have been interpreted in several ways, including as an amalgamation of multiple terranes, as a result of oroclinal bending of a long, single arc, or as a Caledonian continental collision. Based on recent tectonostratigraphic analyses together with paleomagnetic data, the tectonic styles of the Neoproterozoic to Paleozoic accretionary processes of the Altaids are discussed. The Western Altaids is the main focus of the study, which was mainly composed of several independent linear components such as arcs and microcontinents with Proterozoic basement and cover rocks. Various kinds of arcs existed in the Paleo-Asian Ocean, including a complicated type of arc (Alaskan-type), which is a combination of the Japan- and Mariana-type intra-oceanic arcs and the Cordillera-type continental arcs. These linear components rotated and collided with each other with multiple subduction polarities, which could have been an important result of multiple linear element amalgamation, and which has contributed greatly to the architecture of the Eurasian continent. The basic tectonic styles of the Altaids can be summarized as arc–arc collision, oroclinal bending and large-scale rotation, and multiple subductions with a complicated archipelago paleogeography. These basic features of accretionary orogens in general can be attributed to the amalgamation of complicated multiple linear elements. Some Mesozoic to Cenozoic accretionary orogens in the world are also characterized by processes of multiple linear element amalgamation. More attention should be paid to the multiple linear element amalgamation of ancient accretionary orogens, which will shed light on lateral and vertical continental growth.

[1]  Dunyi Liu,et al.  Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics , 2008 .

[2]  Peter A. Cawood,et al.  Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic , 2005 .

[3]  T. Kusky,et al.  Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter , 1997 .

[4]  N. Volkova,et al.  Geochemical discrimination of metabasalt rocks of the Fan Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: seamount volcanism and accretionary tectonics , 1999 .

[5]  R. Voo,et al.  Devonian paleomagnetism of the North Tien Shan: Implications for the middle-Late Paleozoic paleogeography of Eurasia , 2007 .

[6]  Dennis Brown,et al.  Structure and evolution of the Magnitogorsk forearc basin: Identifying upper crustal processes during arc‐continent collision in the southern Urals , 2001 .

[7]  I. Katayama,et al.  The diamond-bearing Kokchetav Massif, Kazakhstan : petrochemistry and tectonic evolution of an unique ultrahigh-pressure metamorphic terrane , 2002 .

[8]  A. Şengör,et al.  Geology: East Asian tectonic collage , 1985, Nature.

[9]  A. Şengör,et al.  Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia , 1993, Nature.

[10]  B. Natal’in,et al.  TURKIC-TYPE OROGENY AND ITS ROLE IN THE MAKING OF THE CONTINENTAL CRUST , 1996 .

[11]  R. Voo,et al.  Paleozoic northward drift of the North Tien Shan (Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism , 2003 .

[12]  S. Johnston,et al.  The Eocene Southern Vancouver Island Orocline — a response to seamount accretion and the cause of fold-and-thrust belt and extensional basin formation , 2003 .

[13]  B. Windley The evolving continents , 1977 .

[14]  J. Lafon,et al.  The Algodões amphibolite-tonalite gneiss sequence, Borborema Province, NE Brazil: Geochemical and geochronological evidence for Palaeoproterozoic accretion of oceanic plateau/back-arc basalts and adakitic plutons , 2009 .

[15]  R. Voo,et al.  Early Paleozoic paleomagnetism of east Kazakhstan: implications for paleolatitudinal drift of tectonic elements within the Ural–Mongol belt , 2003 .

[16]  J. Nakajima,et al.  Izu-Bonin arc subduction under the Honshu island, Japan : Evidence from geological and seismological aspect , 2009 .

[17]  Peter A. Cawood,et al.  Contrasting modes of supercontinent formation and the conundrum of Pangea , 2009 .

[18]  S. Maruyama Pacific‐type orogeny revisited: Miyashiro‐type orogeny proposed , 1997 .

[19]  V. Puchkov,et al.  ORDOVICIAN—PERMIAN PALAEOGEOGRAPHY OF CENTRAL EURASIA: DEVELOPMENT OF PALAEOZOIC PETROLEUM‐BEARING BASINS , 2003 .

[20]  H. Senshu,et al.  Granite subduction: Arc subduction, tectonic erosion and sediment subduction , 2009 .

[21]  Wang,et al.  P–T path of high‐pressure/low‐temperature rocks and tectonic implications in the western Tianshan Mountains, NW China , 1999 .

[22]  E. B. Sal’nikova,et al.  Early Precambrian crystalline complexes of the Central Asian microcontinent: Age, sources, tectonic position , 2007 .

[23]  R. Klemd,et al.  Primary fluids entrapped at blueschist to eclogite transition: evidence from the Tianshan meta-subduction complex in northwestern China , 2001 .

[24]  R. Voo,et al.  Paleomagnetism of mid-Paleozoic subduction-related volcanics from the Chingiz Range in NE Kazakhstan: The evolving paleogeography of the amalgamating Eurasian composite continent , 2009 .

[25]  E. B. Sal’nikova,et al.  Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt: loss of a Precambrian microcontinent , 2001 .

[26]  B. Natalin,et al.  Phanerozoic continental growth in Central Asia , 2004 .

[27]  B. Windley,et al.  Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia , 2004, Journal of the Geological Society.

[28]  S. Whattam Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components , 2009 .

[29]  Xiao Xuchang,et al.  Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China , 1998 .

[30]  A. Polat,et al.  Formation of an Archean tectonic mélange in the Schreiber‐Hemlo greenstone belt, Superior Province, Canada: Implications for Archean subduction‐accretion process , 1999 .

[31]  Peter A. Cawood Structural Relations in the Subduction Complex of the Paleozoic New England Fold Belt, Eastern Australia , 1982, The Journal of Geology.

[32]  B. Windley,et al.  Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution , 2002, The Journal of Geology.

[33]  R. Seltmann,et al.  The Altaids: Tectonic Evolution and Metallogeny , 2001, SEG Discovery.

[34]  R. Seltmann,et al.  Tectonic Setting, Characteristics, and Regional Exploration Criteria for Gold Mineralization in the Altaid Orogenic Collage The Tien Shan Province as a Key Example , 2002 .

[35]  C. Yuan,et al.  Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic , 2008 .

[36]  D. Farris,et al.  Subduction of a segmented ridge along a curved continental margin: Variations between the western and eastern Sanak–Baranof belt, southern Alaska , 2009 .

[37]  Yiying Sun,et al.  The Tectonic Evolution of Qinghai-Tibet Plateau: A Review , 1989 .

[38]  A. Yakubchuk The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific orogenic collages: similarity and diversity of structural patterns and metallogenic zoning , 2002, Geological Society, London, Special Publications.

[39]  P. Taylor,et al.  First Carboniferous and ?Permian marine macrofaunas from Antarctica and their tectonic implications , 2001, Journal of the Geological Society.

[40]  L. Holmer,et al.  Gondwanan faunal signatures from Early Palaeozoic terranes of Kazakhstan and Central Asia: evidence and tectonic implications , 2009 .

[41]  K. Condie Accretionary orogens in space and time , 2007 .

[42]  V. Burtman Nappes of the southern Tien Shan , 2008 .

[43]  R. Voo,et al.  Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan , 2006 .

[44]  A. Didenko,et al.  Middle Paleozoic subduction belts: The leading factor in the formation of the Central Asian fold-and-thrust belt , 2002 .

[45]  D. Weis,et al.  Caribbean island-arc rifting and back-arc basin development in the Late Cretaceous: Geochemical, isotopic and geochronological evidence from Central Hispaniola , 2008 .

[46]  F. Furuoka,et al.  Accreted oceanic materials in Japan , 1990 .

[47]  B. Stewart,et al.  Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California , 2009 .

[48]  K. Hsu,et al.  Geologic evolution of the Neimonides: a working hypothesis , 1991 .

[49]  R. Coleman Continental growth of northwest China , 1989 .

[50]  B. Song,et al.  Triassic collision of western Tianshan orogenic belt, China: Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks , 2007 .

[51]  A. Kröner,et al.  Dating of late Proterozoic ophiolites in Egypt and the Sudan using the single grain zircon evaporation technique , 1992 .

[52]  R. Enkin,et al.  Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present , 1992 .

[53]  C. Yuan,et al.  End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia , 2009 .

[54]  T. Kusky,et al.  Controls on accretion of flysch and mélange belts at convergent margins: Evidence from the Chugach Bay thrust and Iceworm mélange, Chugach accretionary wedge, Alaska , 1997 .

[55]  R. Voo,et al.  Middle Paleozoic paleomagnetism of east Kazakhstan: post-Middle Devonian rotations in a large-scale orocline in the central Ural–Mongol belt , 2003 .

[56]  Alexander Yakubchuk,et al.  Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model , 2004 .

[57]  K. Bucher,et al.  Coesite inclusions in garnet from eclogitic rocks in western Tianshan, northwest China: Convincing proof of UHP metamorphism , 2008 .

[58]  R. Voo,et al.  Paleomagnetic constraints on the paleogeography and oroclinal bending of the Devonian volcanic arc in Kazakhstan , 2007 .

[59]  T. Kusky Accretion of the Archean Slave province , 1988 .

[60]  H. Kozlu,et al.  Early Paleozoic evolution of the NW Gondwanaland: data from southern Turkey and surrounding regions , 2000 .

[61]  J. Glen A kinematic model for the southern Alaska orocline based on regional fault patterns , 2004 .

[62]  Jinyi Li,et al.  Postcollisional Eastward Extrusion and Tectonic Exhumation along the Eastern Tianshan Orogen, Central Asia: Constraints from Dextral Strike-Slip Motion and 40Ar/39Ar Geochronological Evidence , 2008, The Journal of Geology.

[63]  A. Garcia‐Casco,et al.  Structure of the accretionary prism, and the evolution of the Paleogene northern Caribbean subduction zone in the region of Camagüey, Cuba , 2009 .

[64]  H. Takagi,et al.  Clockwise 180° rotation of slip direction in a superficial nappe pile emplaced upon a high-P/T type metamorphic terrane in central Japan , 2008 .

[65]  G. Badarch,et al.  Paleozoic Sedimentary Basins and Volcanic-Arc Systems of Southern Mongolia: New Stratigraphic and Sedimentologic Constraints , 1997 .

[66]  K. M. Dawson,et al.  Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera , 2003 .

[67]  G. Jun Eclogite Occurrences in the Southern Tianshan High-Pressure Belt, Xinjiang, Western China , 2000 .

[68]  Dennis Brown,et al.  Accretionary complex structure and kinematics during Paleozoic arc–continent collision in the southern Urals , 2000 .

[69]  Z. Bai,et al.  Late Paleozoic underplating in North Xinjiang: Evidence from shoshonites and adakites , 2009 .

[70]  C. Yuan,et al.  Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids , 2007 .

[71]  R. Cliff,et al.  Lead isotope variations across terrane boundaries of the Tien Shan and Chinese Altay , 2006 .

[72]  X. Xiao,et al.  The mineralogy, petrology, metamorphic PTDt trajectory and exhumation mechanism of blueschists, south Tianshan, northwestern China , 1995 .

[73]  R. Voo Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans: The Tethys blocks , 1993 .

[74]  N. Dobretsov,et al.  VENDIAN-EARLY ORDOVICIAN GEODYNAMIC EVOLUTION AND MODEL FOR EXHUMATION OF ULTRAHIGH- AND HIGH-PRESSURE ROCKS FROM THE KOKCHETAV SUBDUCTION-COLLISION ZONE (northern Kazakhstan) , 2006 .

[75]  C. Hart,et al.  Tectonic and Metallogenic Evolution of the Altay Shan, Northern Xinjiang Uygur Autonomous Region, Northwestern China , 2003 .

[76]  R. Stern The anatomy and ontogeny of modern intra-oceanic arc systems , 2010 .

[77]  I. Metcalfe The Bentong–Raub Suture Zone , 2000 .

[78]  B. Windley,et al.  Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt , 2003 .

[79]  J. Charvet,et al.  Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their geodynamic implications on the evolution of Chinese Tianshan Belt. , 2006 .

[80]  W. Xiao,et al.  Unique Carboniferous-Permian tectonic-metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain , 2006 .

[81]  Jie Hao,et al.  Paleozoic tectonic evolution of the northern Xinjiang, China: Geochemical and geochronological constraints from the ophiolites , 2003 .

[82]  S. Wilde,et al.  Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China , 2000 .

[83]  T. Tagami,et al.  Cordilleran‐type orogeny and episodic growth of continents: Insights from the circum‐Pacific continental margins , 1999 .

[84]  D. Kelsey On ultrahigh-temperature crustal metamorphism , 2008 .

[85]  Tsuyoshi Watanabe,et al.  A Vendian-Cambrian Island Arc System of the Siberian Continent in Gorny Altai (Russia, Central Asia) , 2002 .

[86]  Lianchang Zhang,et al.  Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia , 2004 .

[87]  P. Schiarizza,et al.  Long-lived Panthalassic remnant: The Bridge River accretionary complex, Canadian Cordillera , 1993 .

[88]  C. Yuan,et al.  Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution , 2010 .

[89]  Dunyi Liu,et al.  Paleozoic multiple subduction-accretion processes of the southern Altaids , 2009, American Journal of Science.

[90]  S. Weaver,et al.  Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile , 1999, Journal of the Geological Society.

[91]  Kei Sato,et al.  Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? , 2009 .

[92]  J. C. Ordóñez-Calderón,et al.  Field and geochemical characteristics of the Mesoarchean (∼3075Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust , 2007 .

[93]  Peter A. Cawood,et al.  Accretionary orogens through Earth history , 2009 .

[94]  Tao Wang,et al.  Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt , 2004 .

[95]  J. Davis,et al.  Late Cretaceous to early Tertiary transtension and strain partitioning in the Chugach Accretionary Complex, SE Alaska , 1998 .

[96]  Brian F. Windley,et al.  Tectonic models for accretion of the Central Asian Orogenic Belt , 2007, Journal of the Geological Society.

[97]  Takeyoshi Yoshida,et al.  Reinitiation of subduction and magmatic responses in SW Japan during Neogene time , 2005 .

[98]  W. Fan,et al.  Post-collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen: Petrogenetic and tectonic implications , 2008 .

[99]  T. Ota,et al.  Preserved paleo-oceanic plateaus in accretionary complexes: Implications for the contributions of the Pacific superplume to global environmental change , 2008 .

[100]  C. Yuan,et al.  Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions , 2009 .

[101]  J. Veevers Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating , 2004 .

[102]  S. Wilde,et al.  A-type granites in northeastern China: age and geochemical constraints on their petrogenesis , 2002 .

[103]  Mei-Fu Zhou,et al.  Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China : implications for the tectonic evolution of the Central Asian Orogenic belt , 2004 .

[104]  L. Zonenshain,et al.  Geology of the USSR : a plate-tectonic synthesis , 1990 .

[105]  R. Voo 2004 Presidential Address: Paleomagnetism, Oroclines, and Growth of the Continental Crust , 2004 .

[106]  B. Windley,et al.  Archaean crustal growth processes in southern West Greenland and the southern Superior Province: geodynamic and magmatic constraints , 2009 .

[107]  M. L. Miller,et al.  Geologic signature of early Tertiary ridge subduction in Alaska , 2003 .

[108]  S. Johnston The New Caledonia–D'Entrecasteaux orocline and its role in clockwise rotation of the Vanuatu–New Hebrides Arc and formation of the North Fiji Basin , 2004 .

[109]  M. Allen,et al.  Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia , 1990 .

[110]  A. Sengor Paleotectonics of Asia : fragments of a synthesis. , 1996 .

[111]  S. W. Carey The orocline concept in geotectonics-Part I , 1955 .

[112]  T. Kusky,et al.  Growth of granite greenstone terranes at convergent margins, and stabilization of Archean cratons , 1999 .

[113]  C. Yuan,et al.  Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction , 2009 .

[114]  P. Khosbayar,et al.  The South Siberia-Central Mongolia transect , 1993 .

[115]  Dennis Brown,et al.  Geometric and kinematic evolution of the foreland thrust and fold belt in the southern Urals , 1997 .

[116]  T. Torsvik,et al.  Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review , 2004, Journal of the Geological Society.

[117]  F. Bussy,et al.  Gondwana-derived microcontinents — the constituents of the Variscan and Alpine collisional orogens , 2003 .

[118]  R. Zhu,et al.  Paleomagnetism of the Baiyisi volcanic rocks (ca. 740 Ma) of Tarim, Northwest China: A continental fragment of Neoproterozoic Western Australia? , 2005 .

[119]  P. Jian,et al.  Zircon U-Pb SHRIMP ages of high-pressure granulite in Yushugou ophiolitic terrane in southern Tianshan and their tectonic implications , 2004 .

[120]  T. Kusky,et al.  Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: Major and trace element characteristics, Sr–Nd isotopic systematics and implications for tectonic evolution , 2009 .

[121]  I. Dalziel,et al.  Plumes, orogenesis, and supercontinental fragmentation , 2000 .

[122]  T. Harrison,et al.  The tectonic evolution of Asia , 1996 .

[123]  Trond H. Torsvik,et al.  The Rodinia Jigsaw Puzzle , 2003, Science.

[124]  丸山 茂徳,et al.  Accretionary complex origin of the Sanbagawa, high P/T metamorphic rocks, Central Shikoku, Japan. Layer-parallel shortening structure and greenstone geochemistry. , 2000 .

[125]  T. Kusky,et al.  The Evolving Continents: Understanding Processes of Continental Growth , 2010 .

[126]  Min Sun,et al.  Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia , 2008 .

[127]  Dunyi Liu,et al.  Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol–Okhotsk ocean, suture and orogen , 2005, Journal of the Geological Society.

[128]  Qiang Wang,et al.  Magnesian andesites in north Xinjiang, China , 2009 .

[129]  E. A. Konstantinovskaia Arc–continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia) , 2001 .

[130]  A. Taira,et al.  Accretion of Japanese island arcs and implications for the origin of Archean greenstone belts , 1992 .

[131]  M. Bröcker,et al.  New Age Constraints on the Metamorphic Evolution of the High‐Pressure/Low‐Temperature Belt in the Western Tianshan Mountains, NW China , 2005, The Journal of Geology.

[132]  A. Didenko,et al.  The Vendian-Early Paleozoic history of the continental margin of eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt , 2003 .

[133]  Timothy M. Kusky,et al.  Precambrian ophiolites and related rocks , 2004 .

[134]  I. Safonova Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma , 2009 .

[135]  L. Meng,et al.  Geochemical signature of porphyries in the Baogutu porphyry copper belt, western Junggar, NW China , 2009 .

[136]  X. Xing,et al.  Tectonic setting and formation mechanism of the circum-Junggar porphyritic copper deposit belts. , 2009 .

[137]  Yongfeng Zhu,et al.  The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains , 2005 .

[138]  Peter A. Cawood,et al.  Linking accretionary orogenesis with supercontinent assembly , 2007 .

[139]  B. Natal’in,et al.  Phanerozoic Analogues of Archaean Oceanic Basement Fragments: Altaid Ophiolites and Ophirags , 2004 .

[140]  V. Courtillot,et al.  Palaeomagnetism of East Siberian traps and kimberlites: two new poles and palaeogeographic reconstructions at about 360 and 250 Ma , 2002 .

[141]  W. Griffin,et al.  Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra , 2009 .

[142]  Dennis Brown,et al.  The structural architecture of the footwall to the Main Uralian Fault, southern Urals , 1996 .

[143]  Li Qian The P-T path and geological significance of low-pressure granulite-facies metamorphism in Muzhaerte, southwest Tianshan , 2004 .

[144]  San-zhong Li,et al.  Lithotectonic elements and geological events in the Hengshan–Wutai–Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen , 2007, Geological Magazine.

[145]  C. Yuan,et al.  Genesis of Carboniferous volcanic rocks in the eastern Junggar:constraints on the closure of the Junggar Ocean. , 2006 .

[146]  茂徳 丸山,et al.  四国中央部, 三波川低温高圧型変成岩の付加体起源について : 層平行短縮構造と緑色岩の化学組成 , 2000 .

[147]  T. Torsvik,et al.  Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic , 2007 .

[148]  S. Baba Tectono-metamorphic Events in the North Atlantic Region in the Palaeoproterozoic from the View Point of High-grade Metamorphic Rocks in the Lewisian Complex, South Harris, NW Scotland , 2002 .

[149]  G. Gehrels,et al.  Upper Jurassic-Lower Cretaceous basinal strata along the Cordilleran Margin: Implications for the accretionary history of the Alexander-Wrangellia-Peninsular Terrane , 1992 .

[150]  By,et al.  Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates , 2007 .

[151]  N. Dobretsov,et al.  Geodynamic evolution of Southern Siberia in Late Precambrian - Early Paleozoic time , 1994 .

[152]  N. Dobretsov,et al.  Late Cambrian-Ordovician tectonics and geodynamics of Central Asia , 2007 .

[153]  G. Gehrels,et al.  Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay–Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol–Okhotsk Ocean in central Asia , 2008 .

[154]  W. Xiao,et al.  and collisional orogenesis arc systems and their final juxtapositions leading to accretionary Transitions among Mariana-, Japan-, Cordillera- and Alaska-type Geological Society, London, Special Publications , 2010 .

[155]  Y. Ichiyama,et al.  Petrogenesis of greenstones from the Mino–Tamba belt, SW Japan: Evidence for an accreted Permian oceanic plateau , 2008 .

[156]  J. Rogers,et al.  Differences between Paleozoic Asia and Paleozoic North America as shown by the distribution of ultrahigh-pressure (UHP) terranes , 2008 .

[157]  A. Şengör,et al.  Tectonic Evolution of the Tibetan Plateau: A Working Hypothesis Based on the Archipelago Model of Orogenesis , 1995 .

[158]  D. Wyman,et al.  Lode Gold Deposits and Archean Mantle Plume–Island Arc Interaction, Abitibi Subprovince, Canada , 1999, The Journal of Geology.

[159]  W. Ernst Subduction-zone metamorphism, calc-alkaline magmatism, and convergent-margin crustal evolution , 2010 .

[160]  A. Yakubchuk Re-deciphering the tectonic jigsaw puzzle of northern Eurasia , 2008 .

[161]  X. Ji,et al.  Geochemical characteristics of Karamaili ophiolite in east Junggar, Xingjiang: products of ridge subduction. , 2007 .

[162]  X. Ji,et al.  Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications , 2009 .

[163]  L. I. Solomovich Postcollisional magmatism in the South Tien Shan Variscan Orogenic Belt, Kyrgyzstan: Evidence for high-temperature and high-pressure collision , 2007 .

[164]  A. Şengör,et al.  Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure , 2005 .

[165]  Bin Chen,et al.  Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic , 2000, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[166]  Mei-Fu Zhou,et al.  Geochemistry of the ~ 430-Ma Jingbulake mafic-ultramafic intrusion in Western Xinjiang, NW China: Implications for subduction related magmatism in the South Tianshan orogenic belt , 2009 .

[167]  M. Brown,et al.  Metamorphic patterns in orogenic systems and the geological record , 2009 .

[168]  K. Condie Episodic continental growth models: Afterthoughts and extensions , 2000 .

[169]  San-zhong Li,et al.  Major types, characteristics and geodynamic mechanism of Upper Paleozoic copper deposits in northern Xinjiang, northwestern China , 2006 .

[170]  R. Voo,et al.  The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia , 2008 .

[171]  C. Yuan,et al.  Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications , 2010 .

[172]  J. Vervoort,et al.  Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America , 2009 .

[173]  R. Hall Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations , 2002 .

[174]  V. Batalev,et al.  Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: A review of geological, thermochronological and geophysical data , 2007 .

[175]  Zhang Zi-xin,et al.  A SOUTHWARD EXTENSION OF THE SILURIAN TUVAELLA BRACHIOPOD FAUNA , 1982 .

[176]  C. Yuan,et al.  Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt , 2007 .

[177]  R. Rudnick Making continental crust , 1995, Nature.

[178]  B. Windley,et al.  Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield , 2007 .

[179]  W. Dickinson EVOLUTION OF THE NORTH AMERICAN CORDILLERA , 2004 .

[180]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[181]  A. M. Kozlovskii,et al.  Vendian stage in formation of the Early Caledonian superterrane in Central Asia , 2008 .

[182]  O. Eklund,et al.  Hercynian post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan , 2007 .

[183]  W. Maresch,et al.  Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: Tectonic controls on basin development in Proto-Caribbean margins , 2005 .

[184]  A. Sengor,et al.  The role of Accretionary Wedges in the growth of continents : asiastic examples from Argand to plate tectonics , 1991 .

[185]  R. Hall The Eurasian SE Asian margin as a modern example of an accretionary orogen , 2009 .

[186]  Reimar Seltmann,et al.  Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans , 2010 .

[187]  B. Windley,et al.  Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic , 2009 .

[188]  M. Santosh,et al.  The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume , 2008 .

[189]  K. Jochum,et al.  Coupled evolution of back-arc and island arc-like mafic crust in the late-Neoproterozoic Agardagh Tes-Chem ophiolite, Central Asia: evidence from trace element and Sr–Nd–Pb isotope data , 2002 .

[190]  E. Dantas,et al.  Relics of eclogite facies assemblages in the Ceará Central Domain, NW Borborema Province, NE Brazil: Implications for the assembly of West Gondwana , 2009 .

[191]  A. Şengör,et al.  Tectonic evolution of the Tethyan Region , 1989 .

[192]  E. Khain,et al.  The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications , 2002 .

[193]  J. Veevers Pangea: Evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments , 1994 .

[194]  P. A. Ziegler,et al.  Permo–Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes and mantle dynamics , 2002 .

[195]  Zilong Li,et al.  Mineralogical and geochemical study of a newly discovered mafic granulite, northwest China: Implications for tectonic evolution of the Altay Orogenic Belt , 2006 .

[196]  W. Borowski,et al.  In situ methane concentrations at Hydrate Ridge, offshore Oregon: New constraints on the global gas hydrate inventory from an active margin , 2003 .

[197]  T. Pavlis,et al.  Geologic consequences of plate reorganization: An example from the Eocene southern Alaska fore arc , 1993 .

[198]  S. Wilde,et al.  The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China , 2007 .

[199]  A. Kuzmichev Neoproterozoic (∼800 Ma) orogeny in the Tuva-Mongolia Massif (Siberia): island arc–continent collision at the northeast Rodinia margin , 2001 .

[200]  C. Yuan,et al.  Transitions among Mariana-, Japan-, Cordillera- and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis , 2010 .

[201]  R. Stern Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history , 2008 .

[202]  R. Arenas,et al.  Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events , 1997 .

[203]  M. Santosh,et al.  The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere , 2009 .

[204]  K. Hsü,et al.  Origin of the Kunlun Mountains by arc-arc and arc-continent collisions , 1994 .

[205]  K. Condie,et al.  Continental accretion: contrasting Mesozoic and Early Proterozoic tectonic regimes in North America , 1996 .

[206]  J. Dewey,et al.  The tectonic evolution of the Tibetan Plateau , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[207]  A. N. Filippov,et al.  Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan , 2009 .

[208]  T. Kusky,et al.  Controls on intrusion of near-trench magmas of the Sanak-Baranof belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution , 2003 .

[209]  A. Polat,et al.  Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? , 2006 .

[210]  A. Taira Tectonic Evolution of the Japanese Island Arc System , 2001 .

[211]  M. Tagiri,et al.  Mineral parageneses and metamorphic P-T paths of ultrahigh-pressure eclogites from Kyrghyzstan Tien-Shan , 1995 .