High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode

High-performance TiO2–polythiophene hybrid solar cells are reported. Metal-free organic dye (D102) is employed to modify the TiO2/polythiophene interface. Results indicate that interfacial engineering and dye engineering are crucial for device performance.

[1]  Donal D. C. Bradley,et al.  The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells , 2005 .

[2]  Craig A Grimes,et al.  Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[3]  Ruijiang Hong,et al.  Application of phosphorus diffusion gettering process on upgraded metallurgical grade Si wafers and solar cells , 2010 .

[4]  Ladislav Kavan,et al.  Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis , 1995 .

[5]  D. Fitzmaurice,et al.  Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film , 1996 .

[6]  M. Grätzel,et al.  Cross surface ambipolar charge percolation in molecular triads on mesoscopic oxide films. , 2005, Journal of the American Chemical Society.

[7]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[8]  Wei Zhou,et al.  Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems , 2010 .

[9]  Tin-Tai Chow,et al.  A Review on Photovoltaic/Thermal Hybrid Solar Technology , 2010, Renewable Energy.

[10]  W. Su,et al.  Improved performance of polymer/TiO2 nanorod bulk heterojunction photovoltaic devices by interface modification , 2008 .

[11]  A. J. Frank,et al.  Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy , 1997 .

[12]  N. Greenham,et al.  Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. , 2006, Physical chemistry chemical physics : PCCP.

[13]  Bin Liu,et al.  Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices , 2008 .

[14]  Michael D. McGehee,et al.  Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .

[15]  Marco Piccirelli,et al.  High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination , 2001 .

[16]  Jenny Nelson,et al.  Hybrid polymer-metal oxide thin films for photovoltaic applications{ , 2007 .

[17]  Arvind Tiwari,et al.  Energy metrics analysis of hybrid - photovoltaic (PV) modules , 2009 .

[18]  Michael Grätzel,et al.  Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye , 2005 .

[19]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[20]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[21]  Hidetoshi Miura,et al.  Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells , 2005 .

[22]  Loganathan Umanand,et al.  Optimization and design of energy transport system for solar cooking application , 2011 .

[23]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[24]  P. C. Chui,et al.  Titania bicontinuous network structures for solar cell applications , 2005 .

[25]  Udo Bach,et al.  Modification of TiO2 heterojunctions with benzoic acid derivatives in hybrid molecular solid-state devices , 2000 .

[26]  J. Moser,et al.  Merocyanine Aggregation in Mesoporous Networks , 1996 .

[27]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[28]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.