Design of Underactuated Steerable Electrode Arrays for Optimal Insertions

This paper addresses the design of wire actuated steerable electrode arrays for optimal insertions in cochlear implant surgery. These underactuated electrode arrays are treated as continuum robots which have an embedded actuation strand inside their flexible medium. By pulling on the actuation strand, an electrode array assumes a minimum-energy shape. The problems of designing optimal actuation strand placement are addressed in this paper. Based on the elastic modeling of the steerable electrode arrays proposed in this paper, an analytical solution of the strand placement is solved to minimize the shape discrepancy between a bent electrode array and a given target curve defined by the anatomy. Using the solved strand placement inside the steerable electrode array, an optimized insertion path planning with robotic assistance is proposed to execute the insertion process. Later, an optimization algorithm is presented to minimize the shape discrepancy between an inserted electrode array and a given target curve during the whole insertion process. Simulations show a steerable electrode array bending using the elastic model and robot insertion path planning with optimized strand placement. Two experiments have been conducted to validate the elastic model and algorithms.

[1]  Stephen J. Rebscher,et al.  A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: Comparison of Spiral Clarion™ and HiFocus II™ electrodes , 2005, Hearing Research.

[2]  Jian Zhang,et al.  Optimal Path Planning for Robotic Insertion of Steerable Electrode Arrays in Cochlear Implant Surgery , 2009 .

[3]  Jan Kiefer,et al.  Development and Evaluation of an Improved Cochlear Implant Electrode Design for Electric Acoustic Stimulation , 2004, The Laryngoscope.

[4]  Robert J. Webster,et al.  Motion planning for active cannulas , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  G. Loeb,et al.  Microminiature molding techniques for cochlear electrode arrays , 1995, Journal of Neuroscience Methods.

[6]  G M Clark,et al.  Evaluation of trajectories and contact pressures for the straight nucleus cochlear implant electrode array - a two-dimensional application of finite element analysis. , 2003, Medical engineering & physics.

[7]  K. Wise,et al.  A Parylene-Silicon Cochlear Electrode Array with Integrated Position Sensors , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  Bodo Heimann,et al.  An automated insertion tool for cochlear implants: another step towards atraumatic cochlear implant surgery , 2010, International Journal of Computer Assisted Radiology and Surgery.

[9]  S. Shankar Sastry,et al.  3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics , 2008, WAFR.

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  M. Tismenetsky,et al.  Kronecker Products and Matrix Calculus (Alexander Graham) , 1983 .

[12]  Pierre E. Dupont,et al.  Design and Control of Concentric-Tube Robots , 2010, IEEE Transactions on Robotics.

[13]  Jan Kiefer,et al.  Preservation of Basal Inner Ear Structures in Cochlear Implantation , 2005, ORL.

[14]  Gregory S. Chirikjian,et al.  Equilibrium Conformations of Concentric-tube Continuum Robots , 2010, Int. J. Robotics Res..

[15]  J. Wang,et al.  An integrated position-sensing system for a MEMS-based cochlear implant , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[16]  Stephen J. Rebscher,et al.  A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: Comparison of Nucleus banded and Nucleus Contour ™ electrodes , 2005, Hearing Research.

[17]  J. Bruce C. Davies,et al.  Continuum robots - a state of the art , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[18]  J Thomas Roland,et al.  Fluoroscopically Assisted Cochlear Implantation , 2003, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[19]  G M Clark,et al.  Stiffness properties for Nucleus standard straight and contour electrode arrays. , 2004, Medical engineering & physics.

[20]  Ge Wang,et al.  Three-dimensional modeling and visualization of the cochlea on the Internet , 2000, IEEE Transactions on Information Technology in Biomedicine.

[21]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[22]  S. Neely From Sound to Synapse: Physiology of the Mammalian Ear , 1998 .

[23]  Gregory S. Chirikjian,et al.  Nonholonomic Modeling of Needle Steering , 2006, Int. J. Robotics Res..

[24]  Jian Zhang,et al.  Path Planning and Workspace Determination for Robot-Assisted Insertion of Steerable Electrode Arrays for Cochlear Implant Surgery , 2008, MICCAI.

[25]  G. Wang,et al.  In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. , 1998, The Annals of otology, rhinology & laryngology. Supplement.

[26]  A. Eshraghi,et al.  Comparative Study of Cochlear Damage With Three Perimodiolar Electrode Designs , 2003, The Laryngoscope.

[27]  J Thomas Roland,et al.  A Model for Cochlear Implant Electrode Insertion and Force Evaluation: Results with a New Electrode Design and Insertion Technique , 2005, The Laryngoscope.

[28]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[29]  Koichi Suzumori,et al.  Flexible microactuator for miniature robots , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[30]  Robert J. Webster,et al.  Mechanics of Precurved-Tube Continuum Robots , 2009, IEEE Transactions on Robotics.

[31]  Graeme M. Clark,et al.  Development of a steerable cochlear implant electrode array , 2007 .

[32]  G M Clark,et al.  Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array. , 1996, The American journal of otology.

[33]  J. J. Grote,et al.  The Importance of Human Cochlear Anatomy for the Results of Modiolus-Hugging Multichannel Cochlear Implants , 2001, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[34]  Jian Zhang,et al.  Model and parameter identification of friction during robotic insertion of cochlear-implant electrode arrays , 2009, 2009 IEEE International Conference on Robotics and Automation.

[35]  Jian Zhang,et al.  A Pilot Study of Robot-Assisted Cochlear Implant Surgery Using Steerable Electrode Arrays , 2006, MICCAI.

[36]  Gregory S. Chirikjian,et al.  Kinematically optimal hyper-redundant manipulator configurations , 1995, IEEE Trans. Robotics Autom..

[37]  Daniel Glozman,et al.  Image-Guided Robotic Flexible Needle Steering , 2007, IEEE Transactions on Robotics.

[38]  W Baumgartner,et al.  Cochlear implant deep electrode insertion: extent of insertional trauma. , 1997, Acta oto-laryngologica.

[39]  Takashi Maeno,et al.  Control of grasping force by detecting stick/slip distribution at the curved surface of an elastic finger , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[40]  Omid Majdani,et al.  Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model , 2010, International Journal of Computer Assisted Radiology and Surgery.