Peridynamic Models for Fatigue and Fracture in Isotropic and in Polycrystalline Materials

[1]  Erkan Oterkus,et al.  Peridynamic analysis of fiber-reinforced composite materials , 2012 .

[2]  P. Geubelle,et al.  Mesoscale analysis of dynamic fragmentation of ceramics under tension , 2005 .

[3]  I. Kunin,et al.  Elastic Media with Microstructure II , 1982 .

[4]  Ying-Cheng Lai,et al.  Lattice models of polycrystalline microstructures: A quantitative approach , 2008 .

[5]  Dominik Rogula,et al.  Nonlocal theory of material media , 1982 .

[6]  Jaroslav Polák,et al.  Short crack growth in polycrystalline materials , 2010 .

[7]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[8]  Guanfeng Zhang,et al.  Why do cracks branch? A peridynamic investigation of dynamic brittle fracture , 2015, International Journal of Fracture.

[9]  E. Holm Surface formation energy for intergranular fracture in two-dimensional polycrystals , 2005 .

[10]  Serge Prudhomme,et al.  A force-based coupling scheme for peridynamics and classical elasticity , 2013 .

[11]  Erkan Oterkus,et al.  Peridynamic Theory and Its Applications , 2013 .

[12]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[13]  Somnath Ghosh,et al.  A material based finite element analysis of heterogeneous media involving Dirichlet tessellations , 1993 .

[14]  Youn Doh Ha,et al.  The formulation and computation of the nonlocal J-integral in bond-based peridynamics , 2012, International Journal of Fracture.

[15]  Philippe H. Geubelle,et al.  Handbook of Peridynamic Modeling , 2017 .

[16]  Veera Sundararaghavan,et al.  A peridynamic implementation of crystal plasticity , 2014 .

[17]  Somnath Ghosh,et al.  Voronoi cell finite elements , 1994 .

[18]  R. Feng,et al.  Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling , 2005 .

[19]  G. Gottstein Physical Foundations of Materials Science , 2004 .

[20]  Ziguang Chen,et al.  Peridynamic modeling of pitting corrosion damage , 2015 .

[21]  A. Wilkinson,et al.  Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal , 2007 .

[22]  A. E. Brown Rationale and summary of methods for determining ultrasonic properties of materials at Lawrence Livermore National Laboratory , 1995 .

[23]  Byong-Taek Lee,et al.  Comparison of fracture characteristic of silicon nitride ceramics with and without second crystalline phase , 2004 .

[24]  M. Negri A non-local approximation of free discontinuity problems in SBV and SBD , 2006 .

[25]  Byung‐Nam Kim,et al.  Characterization of 2-dimensional crack propagation behavior by simulation and analysis , 1996 .

[26]  Nicolas Sau,et al.  Peridynamic modeling of concrete structures , 2007 .

[27]  H. Awaji,et al.  Nanocomposites—a new material design concept , 2005 .

[28]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[29]  Horacio Dante Espinosa,et al.  A computational model of ceramic microstructures subjected to multi-axial dynamic loading , 2001 .

[30]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[31]  Dai-Heng Chen,et al.  Body force method and its applications to numerical and theoretical problems in fracture and damage , 1997 .

[32]  M. Klesnil,et al.  Fatigue of metallic materials , 1980 .

[33]  Quang Van Le Relationship between Microstructure and Mechanical Properties in Bi2Sr2CaCu2Ox Round Wires Using Peridynamic Simulation , 2014 .

[34]  M. F. Cardoso,et al.  A simulated annealing approach to the solution of minlp problems , 1997 .

[35]  Thomas-Peter Fries,et al.  Crack propagation criteria in three dimensions using the XFEM and an explicit–implicit crack description , 2012, International Journal of Fracture.

[36]  Thomas M. Michelitsch,et al.  A note on the formula for the Rayleigh wave speed , 2006 .

[37]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[38]  T. Rabczuk Computational Methods for Fracture in Brittle and Quasi-Brittle Solids: State-of-the-Art Review and Future Perspectives , 2013 .

[39]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[40]  Ivano Benedetti,et al.  A three-dimensional cohesive-frictional grain-boundary micromechanical model for intergranular degradation and failure in polycrystalline materials , 2013 .

[41]  Ziguang Chen,et al.  The Influence of Passive Film Damage on Pitting Corrosion , 2016 .

[42]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[43]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[44]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[45]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .

[46]  Tresa M. Pollock,et al.  Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature , 2009 .

[47]  I. Batyrev,et al.  Density functional theory and evolution algorithm calculations of elastic properties of AlON , 2014 .

[48]  Youn Doh Ha,et al.  Numerical Integration in Peridynamics , 2010 .

[49]  Luiz Fernando Martha,et al.  Fatigue life and crack path predictions in generic 2D structural components , 2003 .

[50]  Erdogan Madenci,et al.  An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory , 2010 .

[51]  Arun K. Subramaniyan,et al.  Validation of a peridynamic model for fatigue cracking , 2016 .

[52]  John D. Clayton,et al.  Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation , 2005 .

[53]  Pablo Seleson Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations , 2014 .

[54]  P. Trovalusci Materials with Internal Structure , 2016 .

[55]  A. Mcevily,et al.  On the Formation of Fatigue Cracks at Twin Boundaries , 1964 .

[56]  T. Belytschko,et al.  A comparative study on finite element methods for dynamic fracture , 2008 .

[57]  Edward Leyton,et al.  The meaning of "is". , 2007, Canadian family physician Medecin de famille canadien.

[58]  F. Bobaru,et al.  Characteristics of dynamic brittle fracture captured with peridynamics , 2011 .

[59]  J. Clayton A Nonlinear Thermomechanical Model of Spinel Ceramics Applied to Aluminum Oxynitride (AlON) , 2011 .

[60]  M. Vaudin,et al.  Brittle intergranular failure in 2D microstructures: Experiments and computer simulations , 1996 .

[61]  T. Pollock,et al.  High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy , 2015 .

[62]  R. Quey,et al.  Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing , 2011 .

[63]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[64]  Guanfeng Zhang,et al.  A peridynamic model for dynamic fracture in functionally graded materials , 2015 .

[65]  K. Chan,et al.  Roles of microstructure in fatigue crack initiation , 2010 .

[66]  Zhongmin Jin,et al.  Cohesive Fracture Model Based on Necking , 2005 .

[67]  K. Tanaka,et al.  Grain Size Effect on Crack Nucleation and Growth in Long-Life Fatigue of Low-Carbon Steel , 1979 .

[68]  P. Patel,et al.  Army Research Laboratory Aberdeen Proving Ground , MD 21005-5066 ARL-RP-0493 July 2014 Experimental Observations on Dynamic Response of Selected Transparent Armor Materials , 2014 .

[69]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[70]  Jifeng Xu,et al.  Peridynamic Analysis of Impact Damage in Composite Laminates , 2008 .

[71]  P. Geubelle,et al.  Mesoscale Modeling of Dynamic Fracture of Ceramic Materials , 2004 .

[72]  Youn Doh Ha,et al.  CONCURRENT COUPLING OF BOND-BASED PERIDYNAMICS AND THE NAVIER EQUATION OF CLASSICAL ELASTICITY BY BLENDING , 2015 .

[73]  Jian Yu,et al.  Impact damage on a thin glass plate with a thin polycarbonate backing , 2013 .

[74]  P. Neumann,et al.  Crack initiation during high cycle fatigue of an austenitic steel , 1990 .

[75]  Tresa M. Pollock,et al.  Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy , 2012 .

[76]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[77]  Hussain,et al.  Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II , 1974 .

[78]  Stewart Andrew Silling,et al.  Peridynamic model for fatigue cracking. , 2014 .

[79]  F. Bobaru Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach , 2007 .

[80]  Justin Schwartz,et al.  A two‐dimensional ordinary, state‐based peridynamic model for linearly elastic solids , 2014 .

[81]  F. Bobaru,et al.  MODELING THE EVOLUTION OF FATIGUE FAILURE WITH PERIDYNAMICS , 2017 .

[82]  Magdalena Ortiz,et al.  An eigenerosion approach to brittle fracture , 2012 .

[83]  Mazdak Ghajari,et al.  A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media , 2014 .

[84]  S. Silling,et al.  Peridynamic modeling of membranes and fibers , 2004 .

[85]  Yin Yu,et al.  Peridynamic analytical method for progressive damage in notched composite laminates , 2014 .

[86]  H. Zreiqat,et al.  Hypothesis: Bones Toughness Arises from the Suppression of Elastic Waves , 2014, Scientific Reports.

[87]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[88]  Horacio Dante Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples , 2003 .

[89]  Stephen A. Vavasis,et al.  Time continuity in cohesive finite element modeling , 2003 .

[90]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[91]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[92]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[93]  Xudong Sun,et al.  Intragranular Particle Residual Stress Strengthening of Al2O3–SiC Nanocomposites , 2005 .

[94]  T. Baker,et al.  Brittle fracture in polycrystalline microstructures with the extended finite element method , 2003 .

[95]  S. Suresh Fatigue of materials , 1991 .

[96]  P. Paris A rational analytic theory of fatigue , 1961 .

[97]  K. T. Ramesh,et al.  AlON: A brief history of its emergence and evolution , 2009 .

[98]  Youn Doh Ha,et al.  Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites , 2012 .

[99]  Bahram Farahmand,et al.  Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints , 2001 .

[100]  Youn Doh Ha,et al.  MODELING DYNAMIC FRACTURE AND DAMAGE IN A FIBER-REINFORCED COMPOSITE LAMINA WITH PERIDYNAMICS , 2011 .

[101]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[102]  S. K. Maiti,et al.  Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field , 1984 .

[103]  E. Dill,et al.  Theory of Elasticity of an Anisotropic Elastic Body , 1964 .

[104]  Christopher R. Weinberger,et al.  Direct numerical simulations in solid mechanics for understanding the macroscale effects of microscale material variability , 2015 .

[105]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[106]  R. Mohtar,et al.  A peridynamic model of flow in porous media , 2015 .

[107]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[108]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[109]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[110]  Erkan Oterkus,et al.  Fatigue failure model with peridynamic theory , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[111]  Selda Oterkus,et al.  Peridynamic thermal diffusion , 2014, J. Comput. Phys..