Structural Examination of Supramolecular Architectures by Electrospray Ionization Mass Spectrometry

Reversibly self-assembling host–guest complexes of the softball type are characterized by electrospray ionization mass spectrometry. Quaternary ammonium ions serve simultaneously as guests and ion labels. Isotope pattern analysis, inclusion of labeled guests, heterodimer experiments, size and shape dependence, and collision-induced fragmentation reveal that the capsular structure of these hydrogen-bonded complexes is retained in the gas phase with the guests inside their cavity. The results parallel findings from solution-phase NMR experiments and show that the guests are encapsulated inside the cavity. These results also demonstrate the value of mass spectrometry for high-order structural examination of supramolecular architecture.

[1]  J. Rebek,et al.  Characterization of Self-Assembling Encapsulation Complexes in the Gas Phase and Solution , 1999 .

[2]  P. Schnier,et al.  Activation energies for dissociation of double strand oligonucleotide anions: evidence for watson-crick base pairing in vacuo. , 1998, Journal of the American Chemical Society.

[3]  J. D. Mendoza Self‐Assembling Cavities: Present and Future , 1998 .

[4]  K. Raymond,et al.  The Self‐Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster , 1998 .

[5]  K. Raymond,et al.  Selective Encapsulation of Aqueous Cationic Guests into a Supramolecular Tetrahedral [M4L6]12- Anionic Host1 , 1998 .

[6]  J. Rebek,et al.  Self-Assembled Molecular Capsule Catalyzes a Diels−Alder Reaction , 1998 .

[7]  J. Rebek,et al.  The 55 % Solution: A Formula for Molecular Recognition in the Liquid State , 1998 .

[8]  D. Reinhoudt,et al.  Characterization of Hydrogen-Bonded Supramolecular Assemblies by MALDI-TOF Mass Spectrometry after Ag+ Labeling. , 1998, Angewandte Chemie.

[9]  J. Rebek,et al.  Diels−Alder Reactions through Reversible Encapsulation , 1998 .

[10]  G. Siuzdak,et al.  Probing viruses with mass spectrometry. , 1998, Journal of mass spectrometry : JMS.

[11]  J. M. Rivera,et al.  Chiral spaces: dissymmetric capsules through self-assembly. , 1998, Science.

[12]  J. M. Rivera,et al.  Structural Rules Governing Self-Assembly Emerge from New Molecular Capsules , 1998 .

[13]  Richard D. Smith,et al.  Nanoscale Tectonics: Self-Assembly, Characterization, and Chemistry of a Novel Class of Organoplatinum Square Macrocycles , 1997 .

[14]  Richard D. Smith,et al.  New mass spectrometric methods for the study of noncovalent associations of biopolymers , 1997 .

[15]  J. Rebek,et al.  Self-Assembling Capsules. , 1997, Chemical reviews.

[16]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[17]  S. Gaskell Electrospray: Principles and Practice , 1997 .

[18]  Richard D. Smith,et al.  Molecular Architecture via Coordination: Marriage of Crown Ethers and Calixarenes with Molecular Squares, Unique Tetranuclear Metallamacrocycles from Metallacrown Ether and Metallacalixarene Complexes via Self-Assembly , 1997 .

[19]  J. Fraser Stoddart,et al.  π–π INTERACTIONS IN SELF‐ASSEMBLY , 1997 .

[20]  S. Shinkai,et al.  CATION–π INTERACTIONS IN CALIX[n]ARENE AND RELATED SYSTEMS , 1997 .

[21]  E. Dalcanale,et al.  Metal‐Induced Self‐Assembly of Cavitand‐Based Cage Molecules , 1997 .

[22]  J. Rebek,et al.  Synthesis and Assembly of New Molecular Hosts: Solvation and the Energetics of Encapsulation , 1997 .

[23]  J. Rebek,et al.  Acceleration of a Diels–Alder reaction by a self-assembled molecular capsule , 1997, Nature.

[24]  H. Virelizier,et al.  Electrospray Ionization Mass Spectrometry in Supramolecular Chemistry: Characterization of Non‐covalent Cyclodextrin Complexes , 1996 .

[25]  J. Rebek,et al.  Entropically driven binding in a self-assembling molecular capsule , 1996, Nature.

[26]  T. Terwilliger,et al.  Direct measurement of oligonucleotide binding stoichiometry of gene V protein by mass spectrometry. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  W. Vogt,et al.  Hydrogen bonded homo- and heterodimers of tetra urea derivatives of calix[4]arenes , 1996 .

[28]  M. Glocker,et al.  Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions—New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes , 1996 .

[29]  Richard D. Smith,et al.  Characterization of hydrogen-bonded aggregates in chloroform by electrospray ionization mass spectrometry , 1996 .

[30]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[31]  J. Rebek,et al.  Autoencapsulation Through Intermolecular Forces: A Synthetic Self-Assembling Spherical Complex , 1995, Science.

[32]  L. Toledo,et al.  Synthesis and Self-Assembly of Pseudo-Spherical Homo- and Heterodimeric Capsules , 1995 .

[33]  G. Siuzdak,et al.  Gas‐Phase Micelles , 1995 .

[34]  David E. Clemmer,et al.  NAKED PROTEIN CONFORMATIONS : CYTOCHROME C IN THE GAS PHASE , 1995 .

[35]  Richard D. Smith,et al.  Using Electrospray Ionization FTICR Mass Spectrometry To Study Competitive Binding of Inhibitors to Carbonic Anhydrase , 1995 .

[36]  M. Vincenti Special feature: Perspective. Host–guest chemistry in the mass spectrometer , 1995 .

[37]  J. Lehn,et al.  Investigation of Self‐Assembled Supramolecular Species in Solution by IL‐ESMS, a New Mass Spectrometric Technique , 1995 .

[38]  E. Dalcanale,et al.  Host-guest chemistry in the gas phase and at the gas-solid interface: Fundamental aspects and practical applications , 1995 .

[39]  R. Smith,et al.  Charge state specific facile gas-phase cleavage of Asp 75-Met 76 peptide bond in the alpha-chain of human apohemoglobin probed by electrospray ionization mass spectrometry. , 1994, Biological mass spectrometry.

[40]  O. Schaad,et al.  Self-Assembly of Heteronuclear Supramolecular Helical Complexes with Segmental Ligands , 1994 .

[41]  Richard D. Smith,et al.  Observation of duplex DNA-drug noncovalent complexes by electrospray ionization mass spectrometry , 1994 .

[42]  Richard D. Smith,et al.  Observation of the noncovalent quaternary associations of proteins by electrospray ionization mass spectrometry , 1994 .

[43]  B. Ganem,et al.  Analysis of the Stoichiometry of the T4 Gene 45 Protein by Ion Spray Mass Spectrometry , 1994 .

[44]  P. Kebarle,et al.  From ions in solution to ions in the gas phase - the mechanism of electrospray mass spectrometry , 1993 .

[45]  J. Henion,et al.  Application of electrospray mass spectrometry for characterizing supramolecular coordination complexes , 1993 .

[46]  G. Siuzdak,et al.  Evidence of calcium(2+)-dependent carbohydrate association through ion spray mass spectrometry , 1993 .

[47]  E. Dalcanale,et al.  Molecular recognition in the gas phase , 1993 .

[48]  W. Clark Still,et al.  AMBER torsional parameters for the peptide backbone , 1992 .

[49]  Christopher L. Brown,et al.  Characterisation of molecular and supramolecular systems by electrospray mass spectrometry , 1992 .

[50]  Stephen R. Wilson,et al.  Bipyridyl amino acid-metal complexes and their characterization by electrospray mass spectrometry , 1992 .

[51]  K. Siu,et al.  Are the electrospray mass spectra of proteins related to their aqueous solution chemistry? , 1992, Journal of the American Society for Mass Spectrometry.

[52]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[53]  Alan L. Rockwood,et al.  Thermally induced dissociation of ions from electrospray mass spectrometry , 1991 .

[54]  Richard D. Smith,et al.  Principles and practice of electrospray ionization—mass spectrometry for large polypeptides and proteins , 1991 .

[55]  B. Ganem,et al.  Detection of noncovalent receptor-ligand complexes by mass spectrometry , 1991 .

[56]  C. Dietrich-Buchecker,et al.  Multiring interlocked systems: structure elucidation by electrospray mass spectrometry , 1991 .

[57]  C. G. Edmonds,et al.  Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry. , 1991, Rapid communications in mass spectrometry : RCM.

[58]  S. Shinkai,et al.  NMR and crystallographic studies of a p-sulfonatocalix(4)arene-guest complex , 1990 .

[59]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[60]  V. Lynch,et al.  Self‐Assembly of Pyrrole–Ferrocene Hybrids, Determined Inter Alia by a New Chemically Induced Electrospray Mass Spectrometry Technique , 1998 .

[61]  J. Rebek,et al.  Chiral Capsules. 1. Softballs with Asymmetric Surfaces Bind Camphor Derivatives , 1998 .

[62]  J. Lehn,et al.  DOUBLE SUBROUTINE SELF-ASSEMBLY; SPONTANEOUS GENERATION OF A NANOCYCLIC DODECANUCLEAR CU1 INORGANIC ARCHITECTURE , 1997 .

[63]  J. Loo,et al.  Studying noncovalent protein complexes by electrospray ionization mass spectrometry. , 1997, Mass spectrometry reviews.

[64]  E. Nordhoff,et al.  Mass spectrometry of nucleic acids. , 1996, Mass spectrometry reviews.

[65]  Gary Siuzdak,et al.  Probing Protein/Protein Interactions with Mass Spectrometry and Isotopic Labeling: Analysis of the p21/Cdk2 Complex , 1996 .

[66]  John B. Fenn,et al.  Electrospray ionization–principles and practice , 1990 .

[67]  C. G. Edmonds,et al.  Electrospray ionization mass spectrometry. , 1990, Methods in enzymology.

[68]  S. Shinkai,et al.  NMR determination of association constants for calixarene complexes. Evidence for the formation of a 1:2 complex with calix[8]arene , 1988 .