Hierarchical Quadrature for Singular Integrals

We introduce a method for the computation of singular integrals arising in the discretization of integral equations. The basic method is based on the concept of admissible subdomains, known, e.g., from panel clustering techniques and -matrices: We split the domain of integration into a hierarchy of subdomains and perform standard quadrature on those subdomains that are amenable to it. By using additional properties of the integrand, we can significantly reduce the algorithmic complexity of our approach. The method works also well for hypersingular integrals.

[1]  Stefan A. Sauter,et al.  On the efficient computation of singular and nearly singular surface integrals arising in 3D-Galerkin BEM , 1996 .

[2]  Gennadi Vainikko,et al.  Multidimensional Weakly Singular Integral Equations , 1993 .

[3]  Massimo Guiggiani Direct Evaluation of Hypersingular Integrals in 2D BEM , 1992 .

[4]  Stefan A. Sauter,et al.  CUBATURE TECHNIQUES FOR 3-D GALERKIN BEM , 1996 .

[5]  H. Schwetlick,et al.  Stoer, J. / Bulirsch, R., Einführung in die Numerische Mathematik II, IX, 286 S., 1973. DM 14,80, US $ 5.50. Berlin-Heidelberg-New York. Springer-Verlag , 1978 .

[6]  C. Schwab,et al.  Quadrature for hp-Galerkin BEM in lR3 , 1997 .

[7]  J. Tamarkin Book Review: Le Problème de Cauchy et les Équations aux Dérivées Partielles Linéaires Hyperboliques , 1934 .

[8]  C. Schwab,et al.  Quadrature for $hp$-Galerkin BEM in ${\hbox{\sf l\kern-.13em R}}^3$ , 1997 .

[9]  Steffen Börm,et al.  Low-Rank Approximation of Integral Operators by Interpolation , 2004, Computing.

[10]  J. Stoer Einfiihrung in die numerische mathematik i , 1972 .

[11]  C. Schwab,et al.  On numerical cubatures of singular surface integrals in boundary element methods , 1992 .

[12]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[13]  Wolfgang Hackbusch,et al.  On numerical cubatures of nearly singular surface integrals arising in BEM collocation , 1994, Computing.

[14]  Christoph Schwab Variable order composite quadrature of singular and nearly singular integrals , 2005, Computing.

[15]  Christoph Schwab,et al.  Numerical evaluation of singular and finite-part integrals on curved surfaces using symbolic manipulation , 1992, Computing.

[16]  Gabriel Wittum,et al.  Boundary Elements: Implementation and Analysis of Advanced Algorithms , 1996 .

[17]  J. Hadamard,et al.  Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques : leçons professées à l'Université Yale , 1932 .

[18]  Christian Lage,et al.  Transformation of hypersingular integrals and black-box cubature , 2001, Math. Comput..

[19]  Gennadi Vainikko Some problems leading to multidimensional weakly singular integral equations , 1993 .

[20]  Stefan A. Sauter,et al.  Efficient automatic quadrature in 3-d Galerkin BEM , 1998 .

[21]  Harry Yserentant A remark on the numerical computation of improper integrals , 2005, Computing.

[22]  Wolfgang Hackbusch,et al.  Numerical Techniques for Boundary Element Methods , 1992 .

[23]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .