Color-rendering indices in global illumination methods

Human perception of material colors depends heavily on the nature of the light sources that are used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. On the basis of state-of-the-art colorimetric methods, we present a modern ap- proach for the calculation of color-rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We up- date the standard CIE method in three main points: first, we use the CIELAB color space; second, we apply a linearized Bradford trans- formation for chromatic adaptation; and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measure- ment surface is composed of a direct and an indirect part. Neumann and Schanda (Proc. CGIV'06 Conf., Leeds, UK, pp. 283-286 (2006)) have shown for the cube model that diffuse interreflections can influence the CRI of a light source. We analyze how color- rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral render- ing engine instead of an RGB-based renderer for reasons of accu- racy of CRI calculations. © 2009 SPIE and

[1]  Alexa I Ruppertsberg,et al.  Creating physically accurate visual stimuli for free: Spectral rendering with RADIANCE , 2008, Behavior research methods.

[2]  W. A. Thornton A Validation of the Color-Preference Index , 1974 .

[3]  Wendy Davis,et al.  Toward an improved color rendering metric , 2005, SPIE Optics + Photonics.

[4]  David Geisler-Moroder,et al.  Color rendering indices in global illumination methods , 2009, Electronic Imaging.

[5]  Peter B. Delahunt,et al.  Does human color constancy incorporate the statistical regularity of natural daylight? , 2004, Journal of vision.

[6]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[7]  Kevin W. Houser,et al.  A review of colour rendering indices and their application to commercial light sources , 2004 .

[8]  Guihua Cui,et al.  Colour-Difference Evaluation Using Colour Appearance Models , 2003, Color Imaging Conference.

[9]  F. Szabó,et al.  A colour harmony rendering index based on predictions of colour harmony impression , 2009 .

[10]  W. A. Thornton Color-discrimination index. , 1972, Journal of the Optical Society of America.

[11]  Gary W. Meyer,et al.  Wavelength selection for synthetic image generation , 1988, Comput. Vis. Graph. Image Process..

[12]  Peter Zsolt Bodrogi Colour Rendering of white LED Light Sources , 2007 .

[13]  Werner Purgathofer,et al.  Verification of Physically Based Rendering Algorithms , 2006, Comput. Graph. Forum.

[14]  Steve Fotios,et al.  Perception of electric light sources of different colour properties , 1997 .

[15]  Greg Ward,et al.  Picture Perfect RGB Rendering Using Spectral Prefiltering and Sharp Color Primaries , 2002, Rendering Techniques.

[16]  H. Xu Colour rendering capacity and luminous efficiency of a spectrum , 1993 .

[17]  Brian E. Smits An RGB-to-Spectrum Conversion for Reflectances , 1999, J. Graphics, GPU, & Game Tools.

[18]  Peter Zsolt Bodrogi,et al.  Why does the CIE Colour Rendering Index fail for white RGB LED light sources , 2004 .

[19]  David Geisler-Moroder Arne Validation of Radiance against CIE171:2006 and Improved Adaptive Subdivision of Circular Light Sources , 2006 .

[20]  S. Süsstrunk,et al.  Spectral Sharpening and the Bradford Transform , 2000 .

[21]  Janos Schanda,et al.  Comprar Colorimetry: Understanding the CIE System | Janos Schanda | 9780470049044 | Wiley , 2007 .

[22]  Mark D. Fairchild,et al.  Full-Spectral Color Calculations in Realistic Image Synthesis , 1999, IEEE Computer Graphics and Applications.

[23]  Arne Valberg,et al.  Towards a uniform color space: A better formula to describe the munsell and OSA color scales , 1986 .

[24]  Werner Purgathofer,et al.  Tone Reproduction and Physically Based Spectral Rendering , 2002, Eurographics.

[25]  Thorstein Seim In search of an improved method for assessing the colour rendering properties of light sources , 1985 .

[26]  M. R. Pointer Measuring colour rendering—A new approach , 1986 .

[27]  László Neumann,et al.  Effect of Interreflections in a Room on the Colour Rendering of Light Source , 2006, CGIV.

[28]  Peter Zsolt Bodrogi Colour rendering: past, present(2004), and future (invited paper) , 2010 .

[29]  Wencheng Wu,et al.  The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations , 2005 .

[30]  Peter Zsolt Bodrogi,et al.  Visual Experiments on Colour Harmony: A Formula and a Rendering Index , 2007 .

[31]  J. Schanda,et al.  Colorimetry : understanding the CIE system , 2007 .

[32]  János Schanda The Concept of Colour Rendering Revisited , 2002, CGIV.

[33]  N Sándor,et al.  Visual colour rendering based on colour difference evaluations , 2006 .

[34]  Mark S. Peercy,et al.  Linear color representations for full speed spectral rendering , 1993, SIGGRAPH.

[35]  H. Xu Sample-independent color rendering index , 1995 .

[36]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[37]  Alexa I Ruppertsberg,et al.  Rendering complex scenes for psychophysics using RADIANCE: how accurate can you get? , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.