High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials

In situ probing of surface species and incipient phases is vital to unraveling the mechanisms of chemical and energy transformation processes. Here we report Ag nanoparticles coated with a thin-film SiO2 shell that demonstrate excellent thermal robustness and chemical stability for surface enhanced Raman spectroscopy (SERS) study of solid oxide fuel cell materials under in situ conditions (at ∼400 °C).

[1]  Michael B. Pomfret,et al.  In situ studies of fuel oxidation in solid oxide fuel cells. , 2007, Analytical chemistry.

[2]  L. D. Jonghe,et al.  Ceria Nanocoating for Sulfur Tolerant Ni-Based Anodes of Solid Oxide Fuel Cells , 2007 .

[3]  Meilin Liu,et al.  From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives , 2011, Energy & Environmental Science.

[4]  Meilin Liu,et al.  Characterization of O2-CeO2 interactions using in situ Raman spectroscopy and first-principle calculations. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[6]  Joseph M. McLellan,et al.  Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes , 2006 .

[7]  Alyson V. Whitney,et al.  Toward a thermally robust operando surface-enhanced raman spectroscopy substrate , 2007 .

[8]  Jiqing Lu,et al.  Study of Oxygen Vacancies in Ce0.9Pr0.1O2-δ Solid Solution by in Situ X-ray Diffraction and in Situ Raman Spectroscopy , 2007 .

[9]  J. W Dijkstra,et al.  Novel concepts for CO2 capture , 2004 .

[10]  Meilin Liu,et al.  Rational SOFC material design: new advances and tools , 2011 .

[11]  Michael B. Pomfret,et al.  Hydrocarbon Fuels in Solid Oxide Fuel Cells: In Situ Raman Studies of Graphite Formation and Oxidation , 2008 .

[12]  T. Kanda,et al.  Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. , 2006, Journal of the American Chemical Society.

[13]  Meilin Liu,et al.  Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform , 2011 .

[14]  Ping Liu,et al.  Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells , 2011, Nature communications.

[15]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[16]  Jian-Feng Li,et al.  Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. , 2007, Chemical communications.

[17]  T. Pradeep,et al.  Zirconia covered silver clusters through functionalized monolayersElectronic supplementary information (ESI) available: XPS, IR data of the monolayer protected cluster and the nanocomposite. See http://www.rsc.org/suppdata/jm/b2/b203081k/ , 2002 .

[18]  A. S. Nair,et al.  An investigation of the structure of stearate monolayers on Au@ZrO2 and Ag@ZrO2 core?shell nanoparticlesElectronic supplementary information (ESI) available: laser desorption mass spectrum, differential scanning calorimetric traces, and thermogravimetric analyses of the materials (3 pages). See http , 2004 .

[19]  Meilin Liu,et al.  La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells , 2010 .

[20]  Michael B. Pomfret,et al.  High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes. , 2006, The journal of physical chemistry. B.

[21]  S. Haile Fuel cell materials and components , 2003 .

[22]  W. Weber,et al.  Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb , 1994 .

[23]  Meilin Liu,et al.  Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs , 2002 .

[24]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[25]  Siwen Wang,et al.  Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell nanoparticles. , 2013, Nanoscale.

[26]  Fritz B. Prinz,et al.  High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation , 2007 .

[27]  Kelsey R. Beavers,et al.  Thermal Stability of Silver Nanorod Arrays , 2010 .

[28]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[29]  I. Uchida,et al.  In Situ Raman Spectroelectrochemistry of Oxygen Species on Gold Electrodes in High Temperature Molten Carbonate Melts , 2004 .

[30]  W. Ueda,et al.  Effect of interaction between Ni and YSZ on coke deposition during steam reforming of methane on Ni/YSZ anode catalysts for an IR-SOFC , 2011 .

[31]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[32]  Zhe Cheng,et al.  New insights into sulfur poisoning behavior of Ni-YSZ anode from long-term operation of anode-supported SOFCs , 2010 .

[33]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[34]  M. El-Sayed,et al.  Application of surface enhanced Raman spectroscopy to the study of SOFC electrode surfaces. , 2012, Physical chemistry chemical physics : PCCP.

[35]  Ping Liu,et al.  Direct octane fuel cells: A promising power for transportation , 2012 .

[36]  Meilin Liu,et al.  Raman spectroscopic monitoring of carbon deposition on hydrocarbon-fed solid oxide fuel cell anodes , 2012 .

[37]  M. Inaba,et al.  Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy , 2000 .

[38]  Andrew G. Glen,et al.  APPL , 2001 .