Lack of Separation Principle for Quantized Linear Quadratic Gaussian Control

This technical note studies the quantized linear quadratic Gaussian (LQG) control problem which is generalized from the classical LQG control but with the constraint that the feedback signal is quantized with a fixed bit rate. We show that state feedback control, state estimation and quantization can not be fully separated in general. Only a weak separation principle holds which converts the quantized LQG control problem into a quantized state estimation problem. Further separation of estimation and quantization is not possible in general. A concrete example is provided to demonstrate this fact. It is also shown that the so-called “whitening” approach to quantized state estimation is not optimal.

[1]  John Baillieul,et al.  Feedback Designs in Information-Based Control , 2002 .

[2]  Minyue Fu,et al.  State Estimation Using Quantized Measurements , 2008 .

[3]  Lihua Xie,et al.  Finite-Level Quantized Feedback Control for Linear Systems , 2009, IEEE Transactions on Automatic Control.

[4]  R. Marleau,et al.  Comments on "Optimum quantization in dynamic systems" , 1972 .

[5]  Lihua Xie,et al.  The sector bound approach to quantized feedback control , 2005, IEEE Transactions on Automatic Control.

[6]  R. Evans,et al.  Stabilization with data-rate-limited feedback: tightest attainable bounds , 2000 .

[7]  R. Larson,et al.  Optimum quantization in dynamic systems , 1967, IEEE Transactions on Automatic Control.

[8]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[9]  Richard H. Middleton,et al.  Feedback stabilization over signal-to-noise ratio constrained channels , 2007, Proceedings of the 2004 American Control Conference.

[10]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[11]  V. Borkar,et al.  LQG Control with Communication Constraints , 1997 .

[12]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[13]  T. Fischer,et al.  Optimal quantized control , 1982 .

[14]  R. Brockett,et al.  Systems with finite communication bandwidth constraints. I. State estimation problems , 1997, IEEE Trans. Autom. Control..

[15]  B. Widrow Statistical analysis of amplitude-quantized sampled-data systems , 1961, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[16]  J. T. Tou,et al.  Optimum Sampled-Data Systems with Quantized Control Signals , 1963, IEEE Transactions on Applications and Industry.

[17]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[18]  J. S. Meditch,et al.  Optimum design of digital control systems , 1964 .

[19]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[20]  Mihail Zervos,et al.  A new proof of the discrete-time LQG optimal control theorems , 1995, IEEE Trans. Autom. Control..

[21]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[22]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[23]  Karl Henrik Johansson,et al.  On Iterative System Design and Separation in Control Over Noisy Channels , 2008 .

[24]  Minyue Fu,et al.  State estimation for linear discrete-time systems using quantized measurements , 2009, Autom..

[25]  L. Meier Combined optimal control and estimation. , 1965 .

[26]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[27]  Andrey V. Savkin,et al.  The problem of LQG optimal control via a limited capacity communication channel , 2004, Syst. Control. Lett..