Simultaneous improvement in the hardness and friction characteristics of Ti-6Al-4V through laser cladding with nanoscale SiC particles in an air environment

[1]  A. Moharami Improving the dry sliding-wear resistance of as-cast Cu-10Sn-1P alloy through accumulative back extrusion (ABE) process , 2020 .

[2]  R. Taghiabadi,et al.  Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing , 2020, Materials Chemistry and Physics.

[3]  A. Moharami High-temperature tribological properties of friction stir processed Al-30Mg2Si composite , 2020 .

[4]  Xian‐Cheng Zhang,et al.  Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process , 2020 .

[5]  H. Kim,et al.  The homogeneity of multi-textured micro-pattern arrays in a laser shock surface patterning process and its effect on the surface properties of aluminum alloy , 2020 .

[6]  S. K. Sadrnezhaad,et al.  Laser Cladding of Ti Alloys for Biomedical Applications , 2020 .

[7]  J. Anburaj,et al.  Rheo-Die-Casting of Al-Si-Mg Alloy and Al-Si-Mg/ SiCp Composites: Microstructure and Wear Behavior , 2020 .

[8]  H. Kim,et al.  Performance evaluation of laser shock micro-patterning process on aluminum surface with various process parameters and loading schemes , 2020 .

[9]  M. Emamy,et al.  Effect of Tool Pin Profile on the Microstructure and Tribological Properties of Friction Stir Processed Al-20 wt% Mg2Si Composite , 2019, Journal of Tribology.

[10]  Defu Liu,et al.  Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model , 2019, Optics & Laser Technology.

[11]  Gaoqiang Xu,et al.  Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance , 2019, Surface and Coatings Technology.

[12]  M. Barekat,et al.  Corrosion study of laser cladded Ti-6Al-4V alloy in different corrosive environments , 2019, Engineering Failure Analysis.

[13]  Hongxia Zhang,et al.  Microstructure and wear properties of multi ceramics reinforced metal-matrix composite coatings on Ti–6Al–4V alloy fabricated by laser surface alloying , 2019, Surface Engineering.

[14]  Fritz Klocke,et al.  Evaluation of the relevance of melt pool dynamics in Laser Material Deposition process modeling , 2017 .

[15]  L. Licea-Jiménez,et al.  Engineered TiO2 and SiO2-TiO2 films on silica-coated glass for increased thin film durability under abrasive conditions , 2017 .

[16]  A. Popoola,et al.  Low pressure cold spray coating of Ti-6Al-4V with SiC-based cermet , 2016 .

[17]  Juan Pou,et al.  Fiber laser cladding of nickel-based alloy on cast iron , 2016 .

[18]  A. Barylski,et al.  Characteristic of Oxide Layers Obtained on Titanium in the Process of Thermal Oxidation , 2016 .

[19]  J. Li,et al.  Effect of the scanning speed on microstructural evolution and wear behaviors of laser cladding NiCrBSi composite coatings , 2015 .

[20]  G. Cao,et al.  Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy , 2015 .

[21]  A. Çelik,et al.  The effect of calcination temperatures on wear properties of TiO2 coated CP-Ti , 2014 .

[22]  L. Qi,et al.  Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy , 2014 .

[23]  T. Torims The Application of Laser Cladding to Mechanical Component Repair, Renovation and Regeneration , 2013 .

[24]  M. Mu,et al.  Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy , 2012 .

[25]  Y. Lin,et al.  Microstructure and tribological performance of Ti–6Al–4V cladding with SiC powder , 2011 .

[26]  Sandip Bysakh,et al.  Microstructure, mechanical and wear properties of laser processed SiC particle reinforced coatings on titanium , 2011 .

[27]  H. Voorwald,et al.  Fatigue behavior of PVD coated Ti-6Al-4V alloy , 2011 .

[28]  Vamsi Krishna Balla,et al.  Laser processing of SiC-particle-reinforced coating on titanium , 2010 .

[29]  K. Benyounis,et al.  Surface carburizing of Ti–6Al–4V alloy by laser melting , 2010 .

[30]  J. Bieniaś,et al.  The influence of SiO2 and SiO2-TiO2 intermediate coatings on bond strength of titanium and Ti6Al4V alloy to dental porcelain. , 2009, Dental materials : official publication of the Academy of Dental Materials.

[31]  Joost J. Vlassak,et al.  Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation , 2009 .

[32]  H. Cimenoglu,et al.  Characteristics and wear performance of borided Ti6Al4V alloy , 2008 .

[33]  T. N. Baker,et al.  Surface engineering of Ti–6Al–4V by nitriding and powder alloying using CW CO2 laser , 2008 .

[34]  Zhishen Wu,et al.  Tribological properties of anatase TiO2 sol–gel films controlled by mutually soluble dopants , 2007 .

[35]  W. Sha,et al.  Titanium alloys after surface gas nitriding , 2006 .

[36]  Steffen Nowotny,et al.  Laser cladding of the titanium alloy TI6242 to restore damaged blades , 2004 .

[37]  T. N. Baker,et al.  XRD and XPS studies on surface MMC layer of SiC reinforced Ti–6Al–4V alloy , 2003 .

[38]  Sunghak Lee,et al.  Improvement of hardness and wear resistance in SiC/Ti-6Al-4V surface composites fabricated by high-energy electron beam irradiation , 2003 .

[39]  V. Ocelík,et al.  SiCp/Ti6Al4V functionally graded materials produced by laser melt injection , 2002 .

[40]  L. Wielunski,et al.  Increase of surface hardness induced by O, Ca or P ion implantation into titanium , 2000 .

[41]  Di Zhang,et al.  Dense Ti3SiC2 prepared by reactive HIP , 1999 .

[42]  L. Amaral,et al.  X-ray diffraction measurements of plasma-nitrided Ti–6Al–4V , 1999 .

[43]  C. Doyle,et al.  Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels. , 1998, Biomaterials.

[44]  P. Molian,et al.  Laser cladding of ti-6al-4v with bn for improved wear performance , 1989 .