Giant Magnetoelectric Effect in Thin‐Film Composites

Highly sensitive AC magnetic field sensors are presented using magnetoelectric composites consisting of magnetostrictive and piezoelectric phases. They are offering passive nature, high sensitivity, large effect enhancement at mechanical resonance, and large linear dynamic range. Thin-film magnetoelectric 2-2 composites benefit from perfect coupling between the piezoelectric and magnetostrictive phases and from the reduction in size which is essential for high spatial resolution. Their design uses AlN and a plate capacitor or PZT with interdigital electrodes and magnetostrictive amorphous FeCoSiB single layers or exchanged biased multilayers. At mechanical resonance and depending on the geometry, extremely high ME coefficients of up to 9.7 kV/cm Oe in air and up to 19 kV/cm Oe under vacuum were obtained. To avoid external DC magnetic bias fields, composites consisting of exchanged biased multilayers serving as the magnetostrictive component with a maximum magnetoelectric coefficient at zero magnetic bias field are employed. Furthermore, the anisotropic response of these exchanged biased composites can be utilized for three-dimensional vector field sensing. Sensitivity and noise of the sensors revealed limits of detection as good as to 2.3 pT/Hz1/2 at mechanical resonance. Sensitivity between 0.1 and 1000 Hz outside resonance can be enhanced through frequency conversion using AC magnetic bias fields.

[1]  L. Daniel,et al.  Finite Element Modeling of Magnetoelectric Sensors , 2008, IEEE Transactions on Magnetics.

[2]  S. Dong,et al.  Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature , 2006 .

[3]  F. R. de Boer,et al.  Exchange biasing by Ir19Mn81: Dependence on temperature, microstructure and antiferromagnetic layer thickness , 2000 .

[4]  S. Dong,et al.  Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates , 2006 .

[5]  D. G. Lord,et al.  Magnetic properties and microstructure of giant magnetostrictive TbFe/FeCo multilayers , 1998 .

[6]  G. Srinivasan,et al.  Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites , 2003, cond-mat/0306513.

[7]  B. Wagner,et al.  Sputtered thin film piezoelectric aluminum nitride as a functional MEMS material , 2012 .

[8]  G. Srinivasan,et al.  Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers , 2003, cond-mat/0307264.

[9]  D. Viehland,et al.  Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in magnetostrictive-piezoelectric layered composites , 2012 .

[10]  S. Mathews,et al.  Fabrication and characterization of all-thin-film magnetoelectric sensors , 2009 .

[11]  M. Gerken,et al.  Theory of magnetoelectric effect in multilayer nanocomposites on a substrate: Static bending-mode response , 2013 .

[12]  E. Klokholm,et al.  The measurement of magnetostriction in ferromagnetic thin films , 1976 .

[13]  Eckhard Quandt,et al.  Magnetoelectric effect in sputtered composites , 2005 .

[14]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[15]  Eckhard Quandt,et al.  Noise Performance of Magnetometers With Resonant Thin-Film Magnetoelectric Sensors , 2011, IEEE Transactions on Instrumentation and Measurement.

[16]  B. Wagner,et al.  Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites , 2010 .

[17]  Markys G. Cain,et al.  A new magnetic recording read head technology based on the magneto-electric effect , 2007 .

[18]  Sang-Gook Kim,et al.  Energy harvesting MEMS device based on thin film piezoelectric cantilevers , 2006 .

[19]  L. Kienle,et al.  Exchange biasing of magnetoelectric composites. , 2012, Nature materials.

[20]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[21]  Eckhard Quandt,et al.  Low damping resonant magnetoelectric sensors , 2010 .

[22]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[23]  X. Mininger,et al.  3D finite element model for magnetoelectric sensors , 2010 .

[24]  J. C. Peuzin,et al.  Magnetostriction and internal stresses in thin films: the cantilever method revisited , 1994 .

[25]  E. Quandt,et al.  Sensitivity enhancement of magnetoelectric sensors through frequency-conversion , 2012 .

[26]  K. Haenen,et al.  Magnetoelectric effect near spin reorientation transition in giant magnetostrictive-aluminum nitride thin film structure , 2008 .

[27]  S. Tiedke,et al.  Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  S. Dong,et al.  Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive , 2003 .

[29]  Martina Gerken,et al.  Two-Dimensional Versus Three-Dimensional Finite-Element Method Simulations of Cantilever Magnetoelectric Sensors , 2013, IEEE Transactions on Magnetics.

[30]  M. Wuttig,et al.  Magnetic vector field sensor using magnetoelectric thin-film composites , 2005, IEEE Transactions on Magnetics.

[31]  M. Wuttig,et al.  Magnetoelectric nano-Fe3O4∕CoFe2O4∥PbZr0.53Ti0.47O3 composite , 2008 .

[32]  Markys G. Cain,et al.  Verified finite element simulation of multiferroic structures: Solutions for conducting and insulating systems , 2008 .

[33]  E. Quandt,et al.  Exchange biased magnetoelectric composites for vector field magnetometers , 2013 .

[34]  S. Dong,et al.  A resonance-bending mode magnetoelectric-coupling equivalent circuit , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.