Passivation of interstitial and vacancy mediated trap-states for efficient and stable triple-cation perovskite solar cells

[1]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[2]  D. P. Padiyan,et al.  Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuum-deposited CdSe thin films , 2003 .

[3]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[4]  S. Shaheen,et al.  Effect of ZnO Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells , 2008 .

[5]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[6]  S. N. Dolia,et al.  Switch ‘on’ and ‘off’ ferromagnetic ordering through the induction and removal of oxygen vacancies and carriers in doped ZnO: A magnetization and electronic structure study , 2010 .

[7]  M. Smirnov Electronic Transport Properties in Pollycrystalline ZnO Thin Films , 2010 .

[8]  Christoph J. Brabec,et al.  Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells , 2011 .

[9]  M. Bertino,et al.  Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li , 2012 .

[10]  Xin Wang,et al.  Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature , 2012 .

[11]  C. Koo,et al.  High performance and high stability low temperature aqueous solution-derived Li–Zr co-doped ZnO thin film transistors , 2012 .

[12]  Nirmal Adhikari,et al.  Enhanced charge transport and photovoltaic performance of PBDTTT-C-T/PC70BM solar cells via UV-ozone treatment. , 2013, Nanoscale.

[13]  N. Xu,et al.  Investigation of the effects of atomic oxygen exposure on the electrical and field emission properties of ZnO nanowires , 2013 .

[14]  M. Ozaki,et al.  Influences of dopant concentration in sol–gel derived AZO layer on the performance of P3HT:PCBM based inverted solar cell , 2013 .

[15]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[16]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[17]  M. Ahmadi,et al.  Inverted polymer solar cells with sol-gel derived cesium-doped zinc oxide thin film as a buffer layer , 2014, Electronic Materials Letters.

[18]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[19]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[20]  M. Grätzel,et al.  Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. , 2014, ACS nano.

[21]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[22]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[23]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[24]  K. S. Rahman,et al.  Growth optimization of ZnS thin films by RF magnetron sputtering as prospective buffer layer in thin film solar cells , 2014 .

[25]  I. Mora‐Seró,et al.  Fast and low temperature growth of electron transport layers for efficient perovskite solar cells , 2015 .

[26]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[27]  Alison B. Walker,et al.  Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy , 2015 .

[28]  Juan Bisquert,et al.  Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[29]  Hongzheng Chen,et al.  Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. , 2015, Journal of the American Chemical Society.

[30]  Q. Gong,et al.  Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer , 2015 .

[31]  Ching-Fuh Lin,et al.  Low temperature two-step solution process for perovskite solar cells with planar structure , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[32]  Aram Amassian,et al.  16.1% Efficient Hysteresis‐Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays , 2015 .

[33]  Xiang Fang,et al.  A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices , 2015 .

[34]  Zhiqiang Guan,et al.  Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. , 2015, ACS applied materials & interfaces.

[35]  Zong-Liang Tseng,et al.  High efficiency stable inverted perovskite solar cells without current hysteresis , 2015 .

[36]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[37]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[38]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[39]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[40]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[41]  Monica Lira-Cantu,et al.  Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers , 2015 .

[42]  Jae-Yup Kim,et al.  Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells , 2016 .

[43]  Heping Shen,et al.  Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[44]  Chien-Hung Chiang,et al.  Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells. , 2016, ChemSusChem.

[45]  J. Bisquert,et al.  Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells , 2016 .

[46]  M. B. Upama,et al.  Simultaneous enhancement in stability and efficiency of low-temperature processed perovskite solar cells , 2016 .

[47]  M. Wright,et al.  Enhanced stability of low temperature processed perovskite solar cells via augmented polaronic intensity of hole transporting layer , 2016 .

[48]  G. Garcia‐Belmonte,et al.  Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites , 2016 .

[49]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[50]  G. Garcia‐Belmonte,et al.  On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells , 2016 .

[51]  P. Zhang,et al.  Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer , 2016 .

[52]  Yongqi Dong,et al.  Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment , 2016, Scientific Reports.

[53]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[54]  Xin Guo,et al.  Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. , 2016, Dalton transactions.

[55]  Peng Chen,et al.  Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. , 2016, ACS nano.

[56]  Ashraf Uddin,et al.  Hysteresis in organic-inorganic hybrid perovskite solar cells , 2016 .

[57]  T. Miyasaka,et al.  Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells. , 2016, ChemSusChem.

[58]  Matthew R. Leyden,et al.  Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells , 2016 .

[59]  M. B. Upama,et al.  Single Vs Mixed Organic Cation for Low Temperature Processed Perovskite Solar Cells , 2016 .

[60]  Riski Titian Ginting,et al.  Low-temperature operation of perovskite solar cells: With efficiency improvement and hysteresis-less , 2016 .

[61]  Dian Wang,et al.  Perovskite Solar Cells: Progress and Advancements , 2016 .

[62]  L. Etgar,et al.  Parameters Influencing the Growth of ZnO Nanowires as Efficient Low Temperature Flexible Perovskite-Based Solar Cells , 2016, Materials.

[63]  Yang Yang,et al.  High-efficiency robust perovskite solar cells on ultrathin flexible substrates , 2016, Nature Communications.

[64]  T. Miyasaka,et al.  HC(NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells , 2016 .

[65]  A. Jen,et al.  Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer , 2016, Advanced science.

[66]  Xinhua Li,et al.  Origin of the high performance of perovskite solar cells with large grains , 2016 .

[67]  Yan‐Zhen Zheng,et al.  Iodine-doped ZnO nanopillar arrays for perovskite solar cells with high efficiency up to 18.24% , 2017 .

[68]  M. B. Upama,et al.  A high performance and low-cost hole transporting layer for efficient and stable perovskite solar cells. , 2017, Physical chemistry chemical physics : PCCP.

[69]  E. Kymakis,et al.  Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer , 2017 .

[70]  T. Miyasaka,et al.  Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber , 2017 .

[71]  Jeong-Il Park,et al.  Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells , 2017 .

[72]  J. Bell,et al.  Enhanced perovskite electronic properties via a modified lead(II) chloride Lewis acid–base adduct and their effect in high-efficiency perovskite solar cells , 2017 .

[73]  Cheng Xu,et al.  High-Efficiency Semitransparent Organic Solar Cells with Non-Fullerene Acceptor for Window Application , 2017 .

[74]  M. B. Upama,et al.  Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells , 2017 .

[75]  M. B. Upama,et al.  Controlled nucleation assisted restricted volume solvent annealing for stable perovskite solar cells , 2017 .

[76]  M. B. Upama,et al.  High performance semitransparent organic solar cells with 5% PCE using non-patterned MoO3/Ag/MoO3 anode , 2017 .

[77]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[78]  Yana Vaynzof,et al.  High performance planar perovskite solar cells by ZnO electron transport layer engineering , 2017 .

[79]  Liying Yang,et al.  Effect of UV-ozone process on the ZnO interlayer in the inverted organic solar cells , 2017 .

[80]  Cheng Xu,et al.  Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells , 2017 .

[81]  M. B. Upama,et al.  Solution-Processed Lithium-Doped ZnO Electron Transport Layer for Efficient Triple Cation (Rb, MA, FA) Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[82]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[83]  M. B. Upama,et al.  Controlled Ostwald ripening mediated grain growth for smooth perovskite morphology and enhanced device performance , 2017 .

[84]  M. B. Upama,et al.  Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells. , 2018, Nanoscale.

[85]  M. B. Upama,et al.  Effect of annealing dependent blend morphology and dielectric properties on the performance and stability of non-fullerene organic solar cells , 2018 .

[86]  M. B. Upama,et al.  Cesium compounds as interface modifiers for stable and efficient perovskite solar cells , 2018 .