Analytic model for the bispectrum of galaxies in redshift space

We develop an analytic theory for the redshift space bispectrum of dark matter, haloes, and galaxies. This is done within the context of the halo model of structure formation, as this allows for the self-consistent inclusion of linear and nonlinear redshift-space distortions and also for the nonlinearity of the halo bias. The model is applicable over a wide range of scales: on the largest scales the predictions reduce to those of the standard perturbation theory (PT); on smaller scales they are determined primarily by the nonlinear virial velocities of galaxies within haloes, and this gives rise to the $U$-shaped anisotropy in the reduced bispectrum\char22{}a finger print of the Finger-Of-God distortions. We then confront the predictions with measurements of the redshift-space bispectrum of dark matter from an ensemble of numerical simulations. On very large scales, $k=0.05h\text{ }\text{ }{\mathrm{Mpc}}^{\ensuremath{-}1}$, we find reasonably good agreement between our halo model, PT and the data, to within the errors. On smaller scales, $k=0.1h\text{ }\text{ }{\mathrm{Mpc}}^{\ensuremath{-}1}$, the measured bispectra differ from the PT at the level of $\ensuremath{\sim}10%\char21{}20%$, especially for colinear triangle configurations. The halo model predictions improve over PT, but are accurate to no better than 10%. On smaller scales $k=0.5\char21{}1.0h\text{ }\text{ }{\mathrm{Mpc}}^{\ensuremath{-}1}$, our model provides a significant improvement over PT, which breaks down. This implies that studies which use the lowest order PT to extract galaxy bias information are not robust on scales $k\ensuremath{\gtrsim}0.1h\text{ }\text{ }{\mathrm{Mpc}}^{\ensuremath{-}1}$. The analytic and simulation results also indicate that there is no observable scale for which the configuration dependence of the reduced bispectrum is constant\char22{}hierarchical models for the higher-order correlation functions in redshift space are unlikely to be useful. It is hoped that our model will facilitate extraction of information from large-scale structure surveys of the Universe, because different galaxy populations are naturally included into our description.

[1]  M. Neyrinck,et al.  Baryon oscillations in galaxy and matter power-spectrum covariance matrices , 2007, 0710.3586.

[2]  Astronomy,et al.  The statistics of lambda CDM Halo Concentrations , 2007, 0706.2919.

[3]  E. Komatsu,et al.  The bispectrum of galaxies from high-redshift galaxy surveys: Primordial non-Gaussianity and non-linear galaxy bias , 2007, 0705.0343.

[4]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[5]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release , 2007, 0704.0806.

[6]  R. Smith,et al.  Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.

[7]  Robert C. Nichol,et al.  The three-point correlation function of luminous red galaxies in the Sloan Digital Sky Survey , 2007, astro-ph/0703340.

[8]  Y. Jing,et al.  Bispectrum and Nonlinear Biasing of Galaxies: Perturbation Analysis, Numerical Simulation, and SDSS Galaxy Clustering , 2006, astro-ph/0609740.

[9]  R. Smith,et al.  Scale Dependence of Halo and Galaxy Bias: Effects in Real Space , 2006, astro-ph/0609547.

[10]  P. Mcdonald Clustering of dark matter tracers: Renormalizing the bias parameters , 2006, astro-ph/0609413.

[11]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[12]  C. Frenk,et al.  The halo mass function from the dark ages through the present day , 2006, astro-ph/0607150.

[13]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[14]  J. Tinker Redshift-space distortions with the halo occupation distribution – II. Analytic model , 2006, astro-ph/0604217.

[15]  M. Crocce,et al.  Cosmology and the Bispectrum , 2006, astro-ph/0604505.

[16]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[17]  A. J. Connolly,et al.  The Effect of Large-Scale Structure on the SDSS Galaxy Three-Point Correlation Function , 2006, astro-ph/0602548.

[18]  C. Baugh,et al.  Statistical analysis of galaxy surveys – II. The three-point galaxy correlation function measured from the 2dFGRS , 2005 .

[19]  R. Sheth,et al.  The impact of halo shapes on the bispectrum in cosmology , 2005, astro-ph/0508382.

[20]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[21]  P.Norberg,et al.  Statistical Analysis of Galaxy Surveys-II. The 3-point galaxy correlation function measured from the 2dFGRS , 2005, astro-ph/0506249.

[22]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[23]  E. Gaztañaga,et al.  The three-point function in large-scale structure: redshift distortions and galaxy bias , 2005, astro-ph/0501637.

[24]  N. Yoshida,et al.  Galaxy clustering constraints on deviations from Newtonian gravity at cosmological scales , 2005, astro-ph/0501366.

[25]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[26]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[27]  R. Scoccimarro,et al.  Galaxy bias and halo-occupation numbers from large-scale clustering , 2004, astro-ph/0412626.

[28]  P. Watts,et al.  Triaxial haloes, intrinsic alignments and the dark matter power spectrum , 2004, astro-ph/0412441.

[29]  Y. Jing,et al.  Correcting for the Alias Effect When Measuring the Power Spectrum Using a Fast Fourier Transform , 2004, astro-ph/0409240.

[30]  R. Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004, astro-ph/0407214.

[31]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[32]  F. V. D. Bosch,et al.  The three-point correlation function of galaxies: comparing halo occupation models with observations , 2004, astro-ph/0404143.

[33]  R. Nichol,et al.  Three-Point Correlation Functions of SDSS Galaxies in Redshift Space: Morphology, Color, and Luminosity Dependence , 2004, astro-ph/0403638.

[34]  M. Zaldarriaga,et al.  Probing primordial non-Gaussianity with large - scale structure , 2003, astro-ph/0312286.

[35]  Y. Jing,et al.  The Three-Point Correlation Function of Galaxies Determined from the Two-Degree Field Galaxy Redshift Survey , 2003, astro-ph/0311585.

[36]  B. Jain,et al.  The three‐point correlation function in cosmology , 2002, astro-ph/0209167.

[37]  B. Jain,et al.  Substructure and the halo model of large-scale structure , 2002, astro-ph/0208353.

[38]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[39]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[40]  Y. Suto,et al.  Modeling a Pairwise Peculiar Velocity Distribution Function of Dark Matter from Halo Density Profiles , 2002, astro-ph/0205016.

[41]  Y. Jing,et al.  Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.

[42]  Y. Jing,et al.  An analytical model for the non-linear redshift-space power spectrum , 2002, astro-ph/0201124.

[43]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[44]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[45]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[46]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[47]  J. Frieman,et al.  The Bispectrum of IRAS Redshift Catalogs , 2001 .

[48]  A. Cooray,et al.  Power Spectrum Covariance of Weak Gravitational Lensing , 2000, astro-ph/0012087.

[49]  J. Frieman,et al.  Constraints on galaxy bias, matter density, and primordial non-Gaussianity from the PSCz galaxy redshift survey. , 2000, Physical review letters.

[50]  R. Sheth,et al.  On the streaming motions of haloes and galaxies , 2000, astro-ph/0010137.

[51]  U. Seljak Redshift-space bias and β from the halo model , 2000, astro-ph/0009016.

[52]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[53]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[54]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[55]  M. White The redshift‐space power spectrum in the halo model , 2000, astro-ph/0005085.

[56]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[57]  R. Scoccimarro The Bispectrum: From Theory to Observations , 2000, astro-ph/0004086.

[58]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[59]  S. Maddox,et al.  The PSCz catalogue , 1999, astro-ph/9909191.

[60]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[61]  H. Mo,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[62]  Denmark,et al.  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[63]  G. Lake,et al.  Cold collapse and the core catastrophe , 1999, astro-ph/9903164.

[64]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[65]  J. Peacock,et al.  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[66]  Joshua A. Frieman,et al.  The Bispectrum as a Signature of Gravitational Instability in Redshift Space , 1998, astro-ph/9808305.

[67]  L. Moscardini,et al.  Large-scale bias in the Universe - II. Redshift-space bispectrum , 1998, Monthly Notices of the Royal Astronomical Society.

[68]  P. Fosalba,et al.  Cosmological perturbation theory and the spherical collapse model - II. Non-Gaussian initial conditions , 1997, astro-ph/9712263.

[69]  R. Scoccimarro Transients from initial conditions: a perturbative analysis , 1997, astro-ph/9711187.

[70]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[71]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[72]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[73]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[74]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[75]  U. Berkeley,et al.  The distribution of pairwise peculiar velocities in the non-linear regime , 1995, astro-ph/9511068.

[76]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[77]  Fry Gravity, bias, and the galaxy three-point correlation function. , 1994, Physical review letters.

[78]  J. Fry,et al.  Skewness in large-scale structure and non-Gaussian initial conditions , 1994 .

[79]  J. Frieman,et al.  The Three-Point Function as a Probe of Models for Large-Scale Structure , 1993, astro-ph/9306018.

[80]  E. Gaztañaga,et al.  Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.

[81]  E. Bertschinger,et al.  Statistics of Primordial Density Perturbations from Discrete Seed Masses , 1991 .

[82]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[83]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[84]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[85]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[86]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[87]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[88]  J. Powell Mathematical Methods in Physics , 1965 .

[89]  Rebecca Whitaker Msfc The Evolving Universe , 2008 .

[90]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[91]  Donald Hamilton,et al.  The evolving universe. Selected topics on large-scale structure and on the properties of galaxies , 1998 .

[92]  Physics Reports , 2022 .