Scale and shape issues in focused cluster power for count data

BackgroundInterest in the development of statistical methods for disease cluster detection has experienced rapid growth in recent years. Evaluations of statistical power provide important information for the selection of an appropriate statistical method in environmentally-related disease cluster investigations. Published power evaluations have not yet addressed the use of models for focused cluster detection and have not fully investigated the issues of disease cluster scale and shape. As meteorological and other factors can impact the dispersion of environmental toxicants, it follows that environmental exposures and associated diseases can be dispersed in a variety of spatial patterns. This study simulates disease clusters in a variety of shapes and scales around a centrally located single pollution source. We evaluate the power of a range of focused cluster tests and generalized linear models to detect these various cluster shapes and scales for count data.ResultsIn general, the power of hypothesis tests and models to detect focused clusters improved when the test or model included parameters specific to the shape of cluster being examined (i.e. inclusion of a function for direction improved power of models to detect clustering with an angular effect). However, power to detect clusters where the risk peaked and then declined was limited.ConclusionFindings from this investigation show sizeable changes in power according to the scale and shape of the cluster and the test or model applied. These findings demonstrate the importance of selecting a test or model with functions appropriate to detect the spatial pattern of the disease cluster.

[1]  D. Wartenberg,et al.  Detecting disease clusters: the importance of statistical power. , 1990, American journal of epidemiology.

[2]  R. A. Stone Investigations of excess environmental risks around putative sources: statistical problems and a proposed test. , 1988, Statistics in medicine.

[3]  T Tango,et al.  A class of tests for detecting 'general' and 'focused' clustering of rare diseases. , 1995, Statistics in medicine.

[4]  A. Lawson On the analysis of mortality events associated with a prespecified fixed point. , 1993, Journal of the Royal Statistical Society. Series A,.

[5]  Yifei Sun,et al.  Determining the size of spatial clusters in focused tests: Comparing two methods by means of simulation in a GIS , 2002, J. Geogr. Syst..

[6]  J. Cuzick,et al.  Methods for investigating localized clustering of disease. Clustering methods based on k nearest neighbour distributions. , 1996, IARC scientific publications.

[7]  L A Waller Statistical power and design of focused clustering studies. , 1996, Statistics in medicine.

[8]  F. Williams,et al.  Identifying populations at risk from environmental contamination from point sources , 2002, Occupational and environmental medicine.

[9]  Julian Besag,et al.  The Detection of Clusters in Rare Diseases , 1991 .

[10]  J. Bithell The choice of test for detecting raised disease risk near a point source. , 1995, Statistics in medicine.

[11]  B. Turnbull,et al.  Chronic disease surveillance and testing of clustering of disease and exposure: Application to leukemia incidence and TCE‐contaminated dumpsites in upstate New York , 1992 .