Counting Hamilton cycles in Dirac hypergraphs

A tight Hamilton cycle in a k-uniform hypergraph (k-graph) G is a cyclic ordering of the vertices of G such that every set of k consecutive vertices in the ordering forms an edge. Rödl, Ruciński and Szemerédi proved that for $k\ge 3$ , every k-graph on n vertices with minimum codegree at least $n/2+o(n)$ contains a tight Hamilton cycle. We show that the number of tight Hamilton cycles in such k-graphs is ${\exp(n\ln n-\Theta(n))}$ . As a corollary, we obtain a similar estimate on the number of Hamilton ${\ell}$ -cycles in such k-graphs for all ${\ell\in\{0,\ldots,k-1\}}$ , which makes progress on a question of Ferber, Krivelevich and Sudakov.

[1]  Bill Cuckler,et al.  Entropy bounds for perfect matchings and Hamiltonian cycles , 2009, Comb..

[2]  Mathias Schacht,et al.  Minimum vertex degree condition for tight Hamiltonian cycles in 3‐uniform hypergraphs , 2016, Proceedings of the London Mathematical Society.

[3]  Gyula Y. Katona,et al.  Generating quadrangulations of surfaces with minimum degree at least 3 , 1999 .

[4]  Daniela Kühn,et al.  Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree , 2006, J. Comb. Theory, Ser. B.

[5]  B. Sudakov,et al.  Counting and packing Hamilton $\ell$-cycles in dense hypergraphs , 2014, 1406.3091.

[6]  B. Schulke A pair-degree condition for Hamiltonian cycles in $3$-uniform hypergraphs , 2019, 1910.02691.

[7]  Daniela Kühn,et al.  Hamilton l-cycles in uniform hypergraphs , 2009, J. Comb. Theory, Ser. A.

[8]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[9]  Yi Zhao,et al.  Recent advances on Dirac-type problems for hypergraphs , 2015, 1508.06170.

[10]  Fan Chung Graham,et al.  Concentration Inequalities and Martingale Inequalities: A Survey , 2006, Internet Math..

[11]  E. Szemerédi,et al.  Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs , 2011 .

[12]  R. Durrett Probability: Theory and Examples , 1993 .

[13]  Daniela Kühn,et al.  Matchings in hypergraphs of large minimum degree , 2006, J. Graph Theory.

[14]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[15]  Daniela Kühn,et al.  Loose Hamilton cycles in hypergraphs , 2008, Discret. Math..

[16]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[17]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[18]  B. Sudakov,et al.  Counting and packing Hamilton -cycles in dense hypergraphs , 2014 .

[19]  Vojtech Rödl,et al.  Dirac-Type Questions For Hypergraphs — A Survey (Or More Problems For Endre To Solve) , 2010 .

[20]  Peter Keevash,et al.  Rainbow factors in hypergraphs , 2018, J. Comb. Theory, Ser. A.

[21]  V. Climenhaga Markov chains and mixing times , 2013 .

[22]  Andrzej Czygrinow,et al.  Tight Codegree Condition for the Existence of Loose Hamilton Cycles in 3-Graphs , 2013, SIAM J. Discret. Math..

[23]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[24]  J. A. Bondy,et al.  Basic graph theory: paths and circuits , 1996 .

[25]  Hiêp Hàn,et al.  Dirac-type results for loose Hamilton cycles in uniform hypergraphs , 2010, J. Comb. Theory, Ser. B.

[26]  Vojtech Rödl,et al.  Perfect matchings in large uniform hypergraphs with large minimum collective degree , 2009, J. Comb. Theory, Ser. A.

[27]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[28]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[29]  Yi Zhao,et al.  Minimum codegree threshold for Hamilton ℓ-cycles in k-uniform hypergraphs , 2014, J. Comb. Theory, Ser. A.

[30]  Benny Sudakov,et al.  Robustness of graph properties , 2016, BCC.

[31]  D. Kuhn,et al.  Hamilton cycles in graphs and hypergraphs: an extremal perspective , 2014, 1402.4268.

[32]  Endre Szemerédi,et al.  On the number of Hamiltonian cycles in Dirac graphs , 2003, Discret. Math..

[33]  Bill Cuckler,et al.  Hamiltonian cycles in Dirac graphs , 2009, Comb..

[34]  Y. Peres,et al.  Markov Chains and Mixing Times: Second Edition , 2017 .

[35]  Elad Aigner-Horev,et al.  Tight Hamilton cycles in cherry-quasirandom 3-uniform hypergraphs , 2017, Comb. Probab. Comput..

[36]  Vojtech Rödl,et al.  An approximate Dirac-type theorem for k-uniform hypergraphs , 2008, Comb..