Structural and mechanistic bases of the anticancer activity of natural aporphinoid alkaloids.

Aporphinoid alkaloids, which encompass a large number of complicated structures, are an important group of natural products. The anticancer activity of aporphinoid alkaloids has become a hot pharmaceutical research area in recent years. Recent studies on the anticancer activity of these compounds are reviewed. The structure activity relationships (SARs) and anticancer mechanisms of aporphinoid alkaloids, as well as simple aporphine, oxoaporphine, dehydroaporphine and dimeric aporphine, have been summarized. The presence of a 1,2-methylenedioxy group and methylation of nitrogen are key features to the cytotoxicity of aporphinoid alkaloids. Oxidation and dehydrogenation of C7 could improve the anticancer activity. The contributions of chirality of hydrogen at C6a and the substitution pattern of other positions about aporphinoid alkaloids for anticancer activity remain unknown. Induced cancer cells apoptosis, prevention of cell proliferation, DNA topoisomerase inhibition, reducing the drug-resistant cellular side population (SP) or cancer stem cells (CSCs) and inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase seem to play important roles in the molecular mechanisms of anticancer activity about aporphinoid alkaloids.