On the design and anytime performance of indicator-based branch and bound for multi-objective combinatorial optimization
暂无分享,去创建一个
Bilel Derbel | Luís Paquete | Arnaud Liefooghe | Alexandre D. Jesus | L. Paquete | A. Liefooghe | B. Derbel
[1] L. Paquete,et al. Easy to say they are Hard, but Hard to see they are Easy— Towards a Categorization of Tractable Multiobjective Combinatorial Optimization Problems , 2017 .
[2] G. Dantzig. Discrete-Variable Extremum Problems , 1957 .
[3] J. Teghem,et al. Solving Multi-Objective Knapsack Problem by a Branch-and-Bound Procedure , 1997 .
[4] Lucas Bradstreet,et al. A Fast Way of Calculating Exact Hypervolumes , 2012, IEEE Transactions on Evolutionary Computation.
[5] Eckart Zitzler,et al. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.
[6] U. Aickelin,et al. Parallel Problem Solving from Nature - PPSN VIII , 2004, Lecture Notes in Computer Science.
[7] Lothar Thiele,et al. Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.
[8] Carlos M. Fonseca,et al. Computing and Updating Hypervolume Contributions in Up to Four Dimensions , 2018, IEEE Transactions on Evolutionary Computation.
[9] Jacques Teghem,et al. Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..
[10] Thomas Stützle,et al. Automatically improving the anytime behaviour of optimisation algorithms , 2014, Eur. J. Oper. Res..
[11] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[12] Daniel Vanderpooten,et al. Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..
[13] Thomas Stützle,et al. Stochastic Local Search: Foundations & Applications , 2004 .
[14] Frédéric Saubion,et al. On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem , 2017, J. Heuristics.
[15] Lothar Thiele,et al. On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.
[16] Mhand Hifi,et al. Constrained two‐dimensional cutting stock problems a best‐first branch‐and‐bound algorithm , 2000 .
[17] Carlos M. Fonseca,et al. Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.
[18] Eckart Zitzler,et al. Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .
[19] Thomas Stützle,et al. Anytime Pareto local search , 2015, Eur. J. Oper. Res..
[20] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[21] Xavier Gandibleux,et al. Bounds and bound sets for biobjective combinatorial optimization problems , 2001 .
[22] Bilel Derbel,et al. Algorithm selection of anytime algorithms , 2020, GECCO.
[23] Thomas Stützle,et al. On local optima in multiobjective combinatorial optimization problems , 2007, Ann. Oper. Res..
[24] Anthony Przybylski,et al. Multi-objective branch and bound , 2017, Eur. J. Oper. Res..
[25] Nicola Beume,et al. SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..