Preconditioned Iterative Methods for Solving Linear Least Squares Problems
暂无分享,去创建一个
Miroslav Tuma | Rafael Bru | José Marín | José Mas | M. Tuma | R. Bru | J. Mas | J. Marín
[1] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[2] Jacek Gondzio,et al. A Matrix-Free Preconditioner for Sparse Symmetric Positive Definite Systems and Least-Squares Problems , 2013, SIAM J. Sci. Comput..
[3] Kincho H. Law,et al. A robust incomplete factorization based on value and space constraints , 1995 .
[4] Bora Uçar,et al. Design, implementation, and analysis of maximum transversal algorithms , 2011, ACM Trans. Math. Softw..
[5] Z. Zlatev,et al. SOLVING LARGE AND SPARSE LINEAR LEAST-SQUARES PROBLEMS BY CONJUGATE GRADIENT ALGORITHMS , 1988 .
[6] Iain S. Duff,et al. Remarks on implementation of O(n1/2τ) assignment algorithms , 1988, TOMS.
[7] C. D. Meyer,et al. Generalized inverses of linear transformations , 1979 .
[8] James Hardy Wilkinson,et al. The Least Squares Problem and Pseudo-Inverses , 1970, Comput. J..
[9] Michele Benzi,et al. Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..
[10] Miroslav Tuma,et al. Balanced Incomplete Factorization , 2008, SIAM J. Sci. Comput..
[11] Miroslav Tůma,et al. The importance of structure in incomplete factorization preconditioners , 2011 .
[12] Xiaoke Cui. Approximate Generalized Inverse Preconditioning Methods for Least Squares Problems , 2009 .
[13] M. Benzi,et al. A comparative study of sparse approximate inverse preconditioners , 1999 .
[14] Iain S. Duff,et al. The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..
[15] Gene H. Golub,et al. A Rank-One Reduction Formula and Its Applications to Matrix Factorizations , 1995, SIAM Rev..
[16] Miroslav Tuma,et al. Improved Balanced Incomplete Factorization , 2010, SIAM J. Matrix Anal. Appl..
[17] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[18] A. Jennings,et al. Incomplete Methods for Solving $A^T Ax = b$ , 1984 .
[19] Nicholas I. M. Gould,et al. New crash procedures for large systems of linear constraints , 1989, Math. Program..
[20] Xiaoge Wang. Incomplete factorization preconditioning for linear least squares problems , 1994 .
[21] Iain S. Duff,et al. A Class of Incomplete Orthogonal Factorization Methods. I: Methods and Theories , 1999 .
[22] Eli Hellerman,et al. The Partitioned Preassigned Pivot Procedure (P4) , 1972 .
[23] Y. Saad. Preconditioning techniques for nonsymmetric and indefinite linear systems , 1988 .
[24] Michele Benzi,et al. A Robust Preconditioner with Low Memory Requirements for Large Sparse Least Squares Problems , 2003, SIAM J. Sci. Comput..
[25] Na Li,et al. MIQR: A Multilevel Incomplete QR Preconditioner for Large Sparse Least-Squares Problems , 2006, SIAM J. Matrix Anal. Appl..
[26] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..
[27] Igor E. Kaporin,et al. High quality preconditioning of a general symmetric positive definite matrix based on its U , 1998 .
[28] Jeffery L. Kennington,et al. Recovery from Numerical Instability during Basis Reinversion , 1997, Comput. Optim. Appl..
[29] Gene H. Golub,et al. Matrix computations , 1983 .
[30] Juana Cerdán,et al. Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman-Morrison Formula , 2003, SIAM J. Sci. Comput..
[31] V. Eijkhout. On the existence problem of incomplete factorisation methods, Lapack Working Note 144, UT-CS-99-435 , 1999 .
[32] Yousef Saad,et al. On the Relations between ILUs and Factored Approximate Inverses , 2002, SIAM J. Matrix Anal. Appl..
[33] Olaf Schenk,et al. Weighted Matchings for Preconditioning Symmetric Indefinite Linear Systems , 2006, SIAM J. Sci. Comput..
[34] Z. Zlatev. Computational Methods for General Sparse Matrices , 1991 .
[35] Mauro Dell'Amico,et al. Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.
[36] Peter Läuchli,et al. Jordan-Elimination und Ausgleichung nach kleinsten Quadraten , 1961 .
[37] Å. Björck,et al. Preconditioners for least squares problems by LU factorization. , 1999 .
[38] Ken Hayami,et al. Generalized approximate inverse preconditioners for least squares problems , 2009 .
[39] M. A. Ajiz,et al. A robust incomplete Choleski‐conjugate gradient algorithm , 1984 .
[40] Iain S. Duff,et al. On Algorithms For Permuting Large Entries to the Diagonal of a Sparse Matrix , 2000, SIAM J. Matrix Anal. Appl..
[41] William G. Poole,et al. A Structurally Stable Modification of Hellerman–Rarick’s ${\text{P}}^4 $ Algorithm for Reordering Unsymmetric Sparse Matrices , 1985 .
[42] Iain S. Duff,et al. A Class of Incomplete Orthogonal Factorization Methods. II: Implementation and Results , 2005 .
[43] Xiaoge Wang,et al. CIMGS: An Incomplete Orthogonal FactorizationPreconditioner , 1997, SIAM J. Sci. Comput..
[44] Owe Axelsson,et al. Diagonally compensated reduction and related preconditioning methods , 1994, Numer. Linear Algebra Appl..
[45] Timothy A. Davis,et al. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization , 2011, TOMS.
[46] Jun-Feng Yin,et al. Greville’s method for preconditioning least squares problems , 2011, Adv. Comput. Math..
[47] Jim Euchner. Design , 2014, Catalysis from A to Z.
[48] José MarÍn José Mas Rafael Bru,et al. Balanced Incomplete Factorization , 2008 .
[49] M. Tismenetsky,et al. A new preconditioning technique for solving large sparse linear systems , 1991 .
[50] Wenbin,et al. A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems , 2009 .
[51] Olaf Schenk,et al. Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization , 2007, Comput. Optim. Appl..
[52] Douglas James. Conjugate Gradient Methods for Constrained Least Squares Problems , 1990 .
[53] A. Neumaier,et al. A NEW PIVOTING STRATEGY FOR GAUSSIAN ELIMINATION , 1996 .
[54] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[55] Xiao-Wen Chang,et al. Stopping Criteria for the Iterative Solution of Linear Least Squares Problems , 2009, SIAM J. Matrix Anal. Appl..
[56] Yousef Saad,et al. ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..
[57] Robert M. Freund,et al. A note on two block-SOR methods for sparse least squares problems , 1987 .
[58] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[59] Igor E. Kaporin,et al. High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU-decomposition , 1998, Numer. Linear Algebra Appl..
[60] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[61] T. Greville,et al. Some Applications of the Pseudoinverse of a Matrix , 1960 .
[62] IAIN S. DUFF,et al. Towards Stable Mixed Pivoting Strategies for the Sequential and Parallel Solution of Sparse Symmetric Indefinite Systems , 2007, SIAM J. Matrix Anal. Appl..
[63] Matthias Bollhöfer,et al. A Robust and Efficient ILU that Incorporates the Growth of the Inverse Triangular Factors , 2003, SIAM J. Sci. Comput..
[64] R. Kouhia,et al. Stabilized and block approximate inverse preconditioners for problems in solid and structural mechanics , 2001 .
[65] Matthias Bollhöfer,et al. A robust ILU with pivoting based on monitoring the growth of the inverse factors , 2001 .