Parvalbumin-Expressing Interneurons Linearly Control Olfactory Bulb Output

[1]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[2]  Alan Peters,et al.  GABA immunoreactive neurons in rat visual cortex , 1987, The Journal of comparative neurology.

[3]  Gordon M. Shepherd,et al.  The Olfactory Bulb , 1998 .

[4]  T. Kosaka,et al.  Synaptic contacts between mitral/tufted cells and GABAergic neurons containing calcium-binding protein parvalbumin in the rat olfactory bulb, with special reference to reciprocal synapses between them , 1994, Brain Research.

[5]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Kosaka,et al.  Electron microscopic serial-sectioning/reconstruction study of parvalbumin-containing neurons in the external plexiform layer of the rat olfactory bulb , 1996, Neuroscience.

[7]  Richard Axel,et al.  Visualizing an Olfactory Sensory Map , 1996, Cell.

[8]  J. Isaacson,et al.  Olfactory Reciprocal Synapses: Dendritic Signaling in the CNS , 1998, Neuron.

[9]  G. Westbrook,et al.  Dendrodendritic Inhibition in the Olfactory Bulb Is Driven by NMDA Receptors , 1998, The Journal of Neuroscience.

[10]  G. Shepherd,et al.  Analysis of Relations between NMDA Receptors and GABA Release at Olfactory Bulb Reciprocal Synapses , 2000, Neuron.

[11]  A. Keller,et al.  Long-Lasting Depolarizations in Mitral Cells of the Rat Olfactory Bulb , 2000, The Journal of Neuroscience.

[12]  B. Strowbridge,et al.  Calcium Influx through NMDA Receptors Directly Evokes GABA Release in Olfactory Bulb Granule Cells , 2000, The Journal of Neuroscience.

[13]  B Sakmann,et al.  Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Minmin Luo,et al.  Response Correlation Maps of Neurons in the Mammalian Olfactory Bulb , 2001, Neuron.

[15]  Jeffry S. Isaacson,et al.  Mechanisms governing dendritic γ-aminobutyric acid (GABA) release in the rat olfactory bulb , 2001 .

[16]  J. Isaacson,et al.  Mechanisms governing dendritic gamma-aminobutyric acid (GABA) release in the rat olfactory bulb. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Westbrook,et al.  Glomerulus-Specific Synchronization of Mitral Cells in the Olfactory Bulb , 2001, Neuron.

[18]  Bert Sakmann,et al.  Reciprocal intraglomerular excitation and intra‐ and interglomerular lateral inhibition between mouse olfactory bulb mitral cells , 2002, The Journal of physiology.

[19]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[20]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. Kosaka,et al.  Calcium-binding protein parvalbumin-immunoreactive neurons in the rat olfactory bulb , 2004, Experimental Brain Research.

[22]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[23]  Alan Carleton,et al.  Interplay between Local GABAergic Interneurons and Relay Neurons Generates γ Oscillations in the Rat Olfactory Bulb , 2004, The Journal of Neuroscience.

[24]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[25]  M. Ennis,et al.  Properties of external plexiform layer interneurons in mouse olfactory bulb slices , 2005, Neuroscience.

[26]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[27]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[28]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[29]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[30]  Alan Gelperin,et al.  Sparse Odor Coding in Awake Behaving Mice , 2006, The Journal of Neuroscience.

[31]  Ben W. Strowbridge,et al.  Blanes Cells Mediate Persistent Feedforward Inhibition onto Granule Cells in the Olfactory Bulb , 2006, Neuron.

[32]  Minmin Luo,et al.  Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors , 2007, Nature Neuroscience.

[33]  T. Kosaka,et al.  Heterogeneity of parvalbumin-containing neurons in the mouse main olfactory bulb, with special reference to short-axon cells and βIV-spectrin positive dendritic segments , 2008, Neuroscience Research.

[34]  Antoniu L. Fantana,et al.  Rat Olfactory Bulb Mitral Cells Receive Sparse Glomerular Inputs , 2008, Neuron.

[35]  T. Kosaka,et al.  Sodium channel cluster, βIV-spectrin and ankyrinG positive “hot spots” on dendritic segments of parvalbumin-containing neurons and some other neurons in the mouse and rat main olfactory bulbs , 2008, Neuroscience Research.

[36]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[37]  G. Fishell,et al.  The Distinct Temporal Origins of Olfactory Bulb Interneuron Subtypes , 2008, The Journal of Neuroscience.

[38]  Alan Carleton,et al.  Dynamic Ensemble Odor Coding in the Mammalian Olfactory Bulb: Sensory Information at Different Timescales , 2008, Neuron.

[39]  Zoltan Nusser,et al.  Distinct Deep Short-Axon Cell Subtypes of the Main Olfactory Bulb Provide Novel Intrabulbar and Extrabulbar GABAergic Connections , 2008, The Journal of Neuroscience.

[40]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[41]  M. Wachowiak,et al.  In Vivo Modulation of Sensory Input to the Olfactory Bulb by Tonic and Activity-Dependent Presynaptic Inhibition of Receptor Neurons , 2008, The Journal of Neuroscience.

[42]  Vikrant Kapoor,et al.  Activity-dependent gating of lateral inhibition in the mouse olfactory bulb , 2008, Nature Neuroscience.

[43]  Ryan M Carey,et al.  Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. , 2009, Journal of neurophysiology.

[44]  David H Gire,et al.  Control of On/Off Glomerular Signaling by a Local GABAergic Microcircuit in the Olfactory Bulb , 2009, The Journal of Neuroscience.

[45]  Court Hull,et al.  Postsynaptic Mechanisms Govern the Differential Excitation of Cortical Neurons by Thalamic Inputs , 2009, The Journal of Neuroscience.

[46]  N. Schoppa Inhibition Acts Globally to Shape Olfactory Cortical Tuning , 2009, Neuron.

[47]  Markus Meister,et al.  Precision and diversity in an odor map on the olfactory bulb , 2009, Nature Neuroscience.

[48]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[49]  Thomas A. Cleland,et al.  Early transformations in odor representation , 2010, Trends in Neurosciences.

[50]  Upinder S Bhalla,et al.  Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse , 2010, Nature Neuroscience.

[51]  Hermann Riecke,et al.  Mechanisms of pattern decorrelation by recurrent neuronal circuits , 2010, Nature Neuroscience.

[52]  Andreas T. Schaefer,et al.  Synaptic Inhibition in the Olfactory Bulb Accelerates Odor Discrimination in Mice , 2010, Neuron.

[53]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[54]  Jie Tan,et al.  Odor Information Processing by the Olfactory Bulb Analyzed in Gene-Targeted Mice , 2010, Neuron.

[55]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[56]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[57]  M. Wachowiak All in a Sniff: Olfaction as a Model for Active Sensing , 2011, Neuron.

[58]  L. Looger,et al.  Chemical and Genetic Engineering of Selective Ion Channel–Ligand Interactions , 2011, Science.

[59]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[60]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[61]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[62]  A. Koulakov,et al.  Sparse Incomplete Representations: A Potential Role of Olfactory Granule Cells , 2011, Neuron.

[63]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[64]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[65]  M. Bartos,et al.  Functional characteristics of parvalbumin‐ and cholecystokinin‐expressing basket cells , 2012, The Journal of physiology.

[66]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[67]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[68]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[69]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[70]  T. Komiyama,et al.  Dynamic Sensory Representations in the Olfactory Bulb: Modulation by Wakefulness and Experience , 2012, Neuron.

[71]  Jeffry S. Isaacson,et al.  Cortical Feedback Control of Olfactory Bulb Circuits , 2012, Neuron.

[72]  R. Yuste,et al.  The Logic of Inhibitory Connectivity in the Neocortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[73]  Adi Mizrahi,et al.  Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output , 2013, Neuron.

[74]  B. Arenkiel,et al.  Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb , 2013, Front. Neural Circuits.

[75]  Matt Wachowiak,et al.  Optical Dissection of Odor Information Processing In Vivo Using GCaMPs Expressed in Specified Cell Types of the Olfactory Bulb , 2013, The Journal of Neuroscience.

[76]  M. T. Shipley,et al.  Olfactory Bulb Short Axon Cell Release of GABA and Dopamine Produces a Temporally Biphasic Inhibition–Excitation Response in External Tufted Cells , 2013, The Journal of Neuroscience.

[77]  Tatsuya Yamasoba,et al.  Odorant Response Properties of Individual Neurons in an Olfactory Glomerular Module , 2013, Neuron.