RESEARCH ARTICLE Mutation systems

tness function based on conserved strongly-testable string patterns. We show that for any k greater than 1, such systems can simulate computation by both nite state machines and asynchronous cellular automata. The cellular automaton simulation shows that in this framework, universal computation is possible and the question of whether one string can evolve into another is undecidable. We also analyze the eciency of the nite state machine simulation assuming random point mutations.

[1]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[2]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[3]  Janusz A. Brzozowski,et al.  Characterizations of locally testable events , 1973, Discret. Math..

[4]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[5]  Sam M. Kim,et al.  A Polynomial Time Algorithm for the Local Testability Problem of Deterministic Finite Automata , 1989, WADS.

[6]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[7]  Enrique Vidal,et al.  Inference of k-Testable Languages in the Strict Sense and Application to Syntactic Pattern Recognition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Satoshi Kobayashi,et al.  Learning Concatenations of Locally Testable Languages from Positive Data , 1994, AII/ALT.

[9]  Satoshi Kobayashi,et al.  Learning Local Languages and Their Application to DNA Sequence Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Tom Head,et al.  Splicing Representations of Strictly Locally Testable Languages , 1998, Discret. Appl. Math..

[11]  John Quackenbush,et al.  Computational genetics: Computational analysis of microarray data , 2001, Nature Reviews Genetics.

[12]  Peter Leupold,et al.  Evolution and observation--a non-standard way to generate formal languages , 2004, Theor. Comput. Sci..

[13]  A. Sandelin,et al.  Applied bioinformatics for the identification of regulatory elements , 2004, Nature Reviews Genetics.

[14]  Martin Tompa,et al.  Discovery of regulatory elements in vertebrates through comparative genomics , 2005, Nature Biotechnology.

[15]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[16]  Robert McNaughton,et al.  Algebraic decision procedures for local testability , 1974, Mathematical systems theory.

[17]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[18]  Peter Leupold,et al.  Computing by observing: Simple systems and simple observers , 2011, Theor. Comput. Sci..

[19]  James Aspnes,et al.  Mutation systems , 2013, Int. J. Comput. Math..