Direct observation of the rotation of F1-ATPase

[1]  Masasuke Yoshida,et al.  Molecular switch of F0F1-ATP synthase, G-protein, and other ATP-driven enzymes , 1996, Journal of bioenergetics and biomembranes.

[2]  V. V. Bulygin,et al.  ATP hydrolysis by membrane-bound Escherichia coli F0F1 causes rotation of the gamma subunit relative to the beta subunits. , 1996, Biochimica et biophysica acta.

[3]  W. Junge,et al.  Intersubunit rotation in active F-ATPase , 1996, Nature.

[4]  R. Aggeler,et al.  Nucleotide-dependent Movement of the ε Subunit between α and β Subunits in the Escherichia coli F1F0-type ATPase* , 1996, The Journal of Biological Chemistry.

[5]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[6]  V. V. Bulygin,et al.  Rotation of subunits during catalysis by Escherichia coli F1-ATPase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Masasuke Yoshida,et al.  Expression of the wild-type and the Cys-/Trp-less α3β3γ complex of thermophilic F1-ATPase in Escherichia coli , 1995 .

[8]  I. Sase,et al.  Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. , 1995, Biophysical journal.

[9]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[10]  J. Howard,et al.  The force exerted by a single kinesin molecule against a viscous load. , 1994, Biophysical journal.

[11]  T. Yanagida,et al.  Single-molecule analysis of the actomyosin motor using nano-manipulation. , 1994, Biochemical and biophysical research communications.

[12]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[13]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[14]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[15]  T. Kunkel,et al.  Efficient site-directed mutagenesis using uracil-containing DNA. , 1991, Methods in enzymology.

[16]  T. Yanagida,et al.  Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. , 1990, Journal of molecular biology.

[17]  Howard C. Berg,et al.  The proton flux through the bacterial flagellar motor , 1987, Cell.

[18]  F. Oosawa,et al.  The loose coupling mechanism in molecular machines of living cells. , 1986, Advances in biophysics.

[19]  Y. Kagawa,et al.  Reconstitution of adenosine triphosphatase of thermophilic bacterium from purified individual subunits. , 1977, The Journal of biological chemistry.

[20]  H. Berg,et al.  Bacteria Swim by Rotating their Flagellar Filaments , 1973, Nature.

[21]  Y. Kagawa,et al.  Partial resolution of the enzymes catalyzing oxidative phosphorylation. IX. Reconstruction of oligomycin-sensitive adenosine triphosphatase. , 1966, The Journal of biological chemistry.

[22]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.