Diode Laser Assisted Surface Nitriding of Ti-6Al-4V: Properties of the Nitrided Surface

[1]  S. K. Pabi,et al.  Mechanical and electrochemical properties of laser surface nitrided Ti–6Al–4V , 2008 .

[2]  Xiaolong Zhu,et al.  Effects of topography and composition of titanium surface oxides on osteoblast responses. , 2004, Biomaterials.

[3]  I. Manna,et al.  Laser processing of materials , 2003 .

[4]  A. Kamiya,et al.  Properties of titanium biomaterial fabricated by sinter-bonding of titanium/hydroxyapatite composite surface-coated layer to pure bulk titanium , 2002 .

[5]  Z. Cui,et al.  Analysis of laser gas nitrided titanium by X-ray photoelectron spectroscopy , 2002 .

[6]  S. Yen,et al.  The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature , 2002 .

[7]  D. Duquesnay,et al.  Hydroxyapatite-coated Ti-6Al-4V part 1: the effect of coating thickness on mechanical fatigue behaviour. , 2002, Biomaterials.

[8]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[9]  S. Tor,et al.  Processing of HA-coated Ti-6Al-4V by a ceramic slurry approach: an in vitro study. , 2001, Biomaterials.

[10]  Lin Li The advances and characteristics of high-power diode laser materials processing , 2000 .

[11]  G. Welsch,et al.  Silicon nitride coating on titanium to enable titanium-ceramic bonding. , 1999, Journal of biomedical materials research.

[12]  C. V. Cooper,et al.  The use of intensified plasma-assisted processing to enhance the surface properties of titanium , 1999 .

[13]  T. N. Baker,et al.  Analysis of the phases developed by laser nitriding Ti6Al4V alloys , 1997 .

[14]  R. Reed,et al.  X-ray measurement of residual stresses in laser surface melted Ti-6Al-4V alloy , 1996 .

[15]  J. Sullivan,et al.  Surface characterisation of plasma-nitrided titanium: an XPS study , 1995 .

[16]  B D Boyan,et al.  Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). , 1995, Journal of biomedical materials research.

[17]  T. N. Baker,et al.  Crack-free hard surfaces produced by laser nitriding of commercial purity titanium , 1994 .

[18]  J C Keller,et al.  Optimization of surface micromorphology for enhanced osteoblast responses in vitro. , 1993, The International journal of oral & maxillofacial implants.

[19]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[20]  R. Klebe,et al.  Comments on the Clinical Application of Fibronectin in Dentistry , 1988, Journal of dental research.

[21]  A. Reddi,et al.  Appearance of fibronectin during the differentiation of cartilage, bone, and bone marrow , 1981, The Journal of cell biology.

[22]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[23]  B. L. Mordike,et al.  Lasers in materials processing , 1997 .

[24]  Paolo Mazzoldi,et al.  Laser surface treatment of metals , 1986 .

[25]  B. Mordike Laser Gas Alloying , 1986 .

[26]  P. H. Morton,et al.  Surface Engineering of Titanium with Nitrogen , 1986 .