Lattice thermal conductivities of two SiO2 polymorphs by first-principles calculations and the phonon Boltzmann transport equation

Lattice thermal conductivities of two ${\mathrm{SiO}}_{2}$ polymorphs, i.e., $\ensuremath{\alpha}$ quartz (low) and $\ensuremath{\alpha}$ cristobalite (low), were studied using first-principles anharmonic phonon calculation and linearized phonon Boltzmann transport equation. Although $\ensuremath{\alpha}$ quartz and $\ensuremath{\alpha}$ cristobalite have similar phonon densities of states, phonon frequency dependencies of phonon group velocities and lifetimes are dissimilar, which results in largely different anisotropies of the lattice thermal conductivities. For $\ensuremath{\alpha}$ quartz and $\ensuremath{\alpha}$ cristobalite, distributions of the phonon lifetimes effective to determine the lattice thermal conductivities are well described by energy and momentum conservations of three phonon scatterings weighted by phonon occupation numbers and one parameter that represents the phonon-phonon interaction strengths.

[1]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[2]  Gernot Deinzer,et al.  Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .

[3]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[4]  N. Soga,et al.  Thermal Conductivity of Cristobalite , 1972 .

[5]  I. Swainson,et al.  Molecular dynamics simulation of alpha - and beta -cristobalite , 1995 .

[6]  Floppy modes in crystalline and amorphous silicates , 1997 .

[7]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[8]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[9]  Murray Hill,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[10]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[11]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[12]  D. Keen,et al.  Rigid Unit Modes in Framework Structures: Theory, Experiment and Applications , 2000 .

[13]  K. Refson,et al.  Lattice dynamics of α-cristobalite and the Boson peak in silica glass , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[15]  V. Heine,et al.  The Determination of Rigid-Unit Modes as Potential Soft Modes for Displacive Phase Transitions in Framework Crystal Structures , 1993 .

[16]  L. Colombo,et al.  Calculating lattice thermal conductivity: a synopsis , 2018 .

[17]  A. Karttunen,et al.  Ab initio study of the lattice thermal conductivity of Cu 2 O using the generalized gradient approximation and hybrid density functional methods , 2017, 1707.00434.

[18]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[19]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[20]  Allan,et al.  Interatomic force constants from first principles: The case of alpha -quartz. , 1994, Physical review. B, Condensed matter.

[21]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[22]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[23]  J. Faber,et al.  Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature , 1985 .

[24]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  P. Andersson,et al.  Temperature and pressure effects on the thermal conductivity and heat capacity of CsCl, CsBr and CsI , 1982 .

[27]  Francesco Mauri,et al.  Ab initio variational approach for evaluating lattice thermal conductivity , 2012, 1212.0470.

[28]  P. W. Bridgman The thermal conductivity and compressibility of several rocks under high pressures , 1924 .

[29]  Richard M. Martin,et al.  Microscopic theory of force constants in the adiabatic approximation , 1970 .

[30]  S. Shang,et al.  A mixed-space approach to first-principles calculations of phonon frequencies for polar materials , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Simon R. Phillpot,et al.  Evaluation of Computational Techniques for Solving the Boltzmann Transport Equation for Lattice Thermal Conductivity Calculations , 2010 .

[32]  Nicola Marzari,et al.  Thermal transport in crystals as a kinetic theory of relaxons , 2016, 1603.02608.

[33]  B. Toby,et al.  STATE-OF-THE-ART HIGH-RESOLUTION POWDER X-RAY DIFFRACTION (HRPXRD) ILLUSTRATED WITH RIETVELD STRUCTURE REFINEMENT OF QUARTZ, SODALITE, TREMOLITE, AND MEIONITE , 2008 .

[34]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[37]  Laurent Chaput,et al.  Direct solution to the linearized phonon Boltzmann equation. , 2013, Physical review letters.

[38]  S. Tamura,et al.  Isotope scattering of dispersive phonons in Ge , 1983 .

[39]  Natalio Mingo,et al.  Lattice thermal conductivity of silicon from empirical interatomic potentials , 2005 .

[40]  S. Tsuneyuki,et al.  Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO 3 with first-principles anharmonic force constants , 2015, 1506.01781.

[41]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[42]  D. Broido,et al.  Phonon thermal transport inBi2Te3from first principles , 2014 .

[43]  L. Lindsay First Principles Peierls-Boltzmann Phonon Thermal Transport: A Topical Review , 2016 .

[44]  Hans Wondratschek,et al.  Brillouin-zone database on the Bilbao Crystallographic Server. , 2014, Acta crystallographica. Section A, Foundations and advances.

[45]  R. G. Ross,et al.  REVIEW ARTICLE: Thermal conductivity of solids and liquids under pressure , 1984 .

[46]  J. Íñiguez,et al.  Thermal conductivity changes across a structural phase transition: The case of high-pressure silica , 2017, 1707.05321.

[47]  R. Hardy Phonon Boltzmann Equation and Second Sound in Solids , 1970 .

[48]  G. Bäckström,et al.  Thermal conductivity of KCl up to 19 kbar , 1974 .

[49]  Stephen A. Wells,et al.  Real-space rigid-unit-mode analysis of dynamic disorder in quartz, cristobalite and amorphous silica , 2002 .

[50]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[51]  H. Kanamori,et al.  Thermal diffusivity measurement of rock-forming minerals from 300° to 1100°K , 1968 .

[52]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[53]  I. Tanaka,et al.  Phonon-phonon interactions in transition metals , 2011, 1103.0137.