Resolving singular forces in cavity flow: multiscale modeling from atomic to millimeter scales.

Flow driven by moving a wall that bounds a fluid-filled cavity is a classic example of a multiscale problem. Continuum equations predict that every scale contributes roughly equally to the total force on the moving wall, leading to a logarithmic divergence, and that there is an infinite hierarchy of vortices at the stationary corners. A multiscale approach is developed that retains an atomistic description in key regions. Following the stress over more than six decades in length in systems with characteristic scales of up to millimeters and milliseconds allows us to resolve the singularities and determine the force for the first time. We find a universal dependence on the macroscopic Reynolds number, and large atomistic effects that depend on wall velocity and interactions.

[1]  Eirik Grude Flekkøy,et al.  Hybrid model for combined particle and continuum dynamics , 2000 .

[2]  A. Acrivos,et al.  Steady flows in rectangular cavities , 1967, Journal of Fluid Mechanics.

[3]  J. Klafter,et al.  The nonlinear nature of friction , 2004, Nature.

[4]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[5]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[6]  Banavar,et al.  Molecular dynamics of Poiseuille flow and moving contact lines. , 1988, Physical review letters.

[7]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[8]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[9]  Stephen F. McCormick,et al.  Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.

[10]  Sidney Yip,et al.  Coupling continuum to molecular-dynamics simulation: Reflecting particle method and the field estimator , 1998 .

[11]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[12]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[13]  E. Weinan,et al.  Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics , 2005 .

[14]  M. Ortiz,et al.  Effect of indenter-radius size on Au(001) nanoindentation. , 2003, Physical review letters.

[15]  J. Banavar,et al.  Corner flow in the sliding plate problem , 1995 .

[16]  R. Peyret,et al.  Computing singular solutions of the Navier–Stokes equations with the Chebyshev‐collocation method , 2001 .

[17]  Thomas Y. Hou,et al.  Multiscale modelling and computation of fluid flow , 2005 .

[18]  David Marsan,et al.  Three-Dimensional Mapping of Dislocation Avalanches: Clustering and Space/Time Coupling , 2003, Science.

[19]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[20]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[21]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[22]  Xiaobo Nie,et al.  Hybrid continuum-atomistic simulation of singular corner flow , 2004 .

[23]  O'Connell,et al.  Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  A. Patera,et al.  Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems , 1997 .

[25]  B. Luan,et al.  The breakdown of continuum models for mechanical contacts , 2005, Nature.

[26]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[27]  Robbins,et al.  Simulations of contact-line motion: Slip and the dynamic contact angle. , 1989, Physical review letters.

[28]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[29]  Xiaobo Nie,et al.  A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow , 2004, Journal of Fluid Mechanics.

[30]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .