A 2D multiwavelength study of the ionized gas and stellar population in the giant H ii region NGC 588

Giant H II regions (GHIIRs) in nearby galaxies are a local sample in which we can study in detail processes in the interaction of gas, dust, and newly f ormed stars which are analagous to those which occurred in episodes of higher intensity in which much of the current stellar population was born. Here, we present an analysis of NGC 588, a GHIIR in M33, based on optical Integral Field Spectroscopy (IFS) data obtained with the PMAS instrument at the 3.5 m telescope of Calar Alto Observatory, CAHA, together with Spitzer infrared images at 8 µm and 24 µm. The extinction distribution measured in the optical shows complex structure, with three maxima which correlate in position with those of the emission at 24 µm and 8 µm. Furthermore, the Hα luminosity absorbed by the dust within the H II region reproduces the structure observed in the 24 µm image, supporting the use of the 24 µm band as a valid tracer of recent star formation. A velocity difference of �50 km s 1 was measured between the areas of high and low surface brightness, which would be expected if NGC 588 were an evolved GHIIR. We have carefully identified the areas which contribute most to the line ratios measured in the integrated spectrum. Those line ratios which are used in diagnostic diagrams proposed by Baldwin et al. (1981) show a larger range of variation in the low surface brightness are as. The ranges are �0.5 to 1.2 dex for [N II]λ6584/Hα, 0.7 to 1.7 dex for [S II]λλ6717,6731/Hα, and 0.3 to 0.5 dex for [O III]λ5007/Hβ, with higher values of [N II]λ6584/Hα and [S II]λλ6717,6731/Hα, and lower values of [O III]λ5007/Hβ in the areas of lower surface brightness. Ratios corresponding to large ionization parameter (U ) are found between the peak of the emission in Hβ and the main ionizing source decreasing radially outwards within the region. Differences between the integrated and local values of the U tracers can be as high as �0.8 dex, notably when using [O III]λλ4959,5007/[O II]λλ3726,3729 and in the high surface brightness spaxels. [O II]λλ3726,3729/Hβ and [O III]λλ4959,5007/[O II]λλ3726,3729 yield similar local values for the ionization parameter, which are consistent with those expected from the integrated spectrum of an H II region ionized by a single star. The ratio [S II]λλ6717,6731/Hα departs significantly from the range predicted by this scena rio, indicating the complex ionization structure in GHIIRs. There is a significant scatter in de rivations of the metallicity using strong line tracers as a function of position, caused by vari ations in the degree of ionization. The scatter is smaller for N2O3 which points to this tracer as a better metallicity tracer th an N2. One interesting result emerges from our comparison between integrated and local line ratio values: measurements of the line ratios of GHIIR in galaxies at distances � >25 Mpc may be dominated by the ionization conditions in their low surface brightness areas.

[1]  A. Holland,et al.  High energy, optical, and infrared detectors for astronomy V : 1-4 July 2012, Amsterdam, Netherlands , 2012 .

[2]  Á. López-Sánchez,et al.  The ionized gas at the centre of IC 10: a possible localized chemical pollution by Wolf–Rayet stars , 2010, 1010.1806.

[3]  E. Pellegrini,et al.  STRUCTURE AND FEEDBACK IN 30 DORADUS. I. OBSERVATIONS , 2010, 1009.4948.

[4]  Andreas Kelz,et al.  Commissioning of the CCD231 4K×4K detector for PMAS , 2010, Astronomical Telescopes + Instrumentation.

[5]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[6]  R. Terlevich,et al.  Integral field spectroscopy of H ii region complexes: the outer disc of NGC 6946 , 2010, 1007.1244.

[7]  H Germany,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - II. Spatially resolved stellar populations and excitation conditions, , 2010, 1006.2219.

[8]  A. Monreal-Ibero,et al.  A study of the interplay between ionized gas and star clusters in the central region of NGC 5253 with 2D spectroscopy , 2010, 1003.5329.

[9]  D. Calzetti,et al.  Molecular and atomic gas in the Local Group galaxy M 33 , 2010, 1003.3222.

[10]  D. Calzetti,et al.  THE CALIBRATION OF MONOCHROMATIC FAR-INFRARED STAR FORMATION RATE INDICATORS , 2010, 1003.0961.

[11]  P. Weilbacher,et al.  P3D: a general data-reduction tool for fiber-fed integral-field spectrographs , 2010, 1002.4406.

[12]  L. Hunt,et al.  Star formation in M 33: the radial and local relations with the gas , 2009, 0912.2015.

[13]  A. Monreal-Ibero,et al.  Spatially resolved study of the physical properties of the ionized gas in NGC 595 , 2009, 0911.3006.

[14]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[15]  Luis Colina,et al.  PMAS optical integral field spectroscopy of luminous infrared galaxies - I. The atlas , 2009, 0907.5105.

[16]  L. Colina,et al.  Integral field optical spectroscopy of a representative sample of ULIRGs - I. The data , 2009, 0907.2408.

[17]  T. Contini,et al.  The impact of the nitrogen-to-oxygen ratio on ionized nebula diagnostics based on [N ii] emission lines , 2009, 0905.4621.

[18]  R. Kennicutt,et al.  STAR FORMATION IN LUMINOUS H ii REGIONS IN M33 , 2009, 0905.1158.

[19]  L. Drissen,et al.  Multiwavelength study of M33's giant H ii regions NGC 588 and NGC 592 , 2009 .

[20]  J. Walsh,et al.  A VLT VIMOS study of the anomalous BCD Mrk 996: mapping the ionized gas kinematics and abundances , 2009, 0903.2280.

[21]  B. Weiner,et al.  DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES , 2008, 0810.4150.

[22]  Hideki Takami,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2008 .

[23]  L. Drissen,et al.  Wolf-Rayet stars in M33 - II. Optical spectroscopy of emission-line stars in giant H II regions , 2008, 0806.2655.

[24]  C. Morisset,et al.  A simple way to model nebulae with distributed ionizing stars , 2008 .

[25]  J. Simon,et al.  The M33 Metallicity Project: Resolving the Abundance Gradient Discrepancies in M33 , 2007, 0711.4351.

[26]  O. Nacional,et al.  The interplay between ionized gas and massive stars in the HII galaxy IIZw70: integral field spectroscopy with PMAS , 2007, 0710.5732.

[27]  R. Kirshner,et al.  Chandra ACIS Survey of M33 (ChASeM33): A First Look , 2007, 0709.4211.

[28]  R. C. Smith,et al.  A Survey of Local Group Galaxies Currently Forming Stars. III. A Search for Luminous Blue Variables and Other Hα Emission-Line Stars , 2007, 0709.1267.

[29]  L. Colina,et al.  Search for tidal dwarf galaxy candidates in a sample of ultraluminous infrared galaxies , 2007, 0706.1145.

[30]  Cambridge,et al.  The effects of spatially distributed ionization sources on the temperature structure of H ii regions , 2007, 0705.2726.

[31]  L. Sodré,et al.  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – III. How to distinguish AGN hosts , 2006, astro-ph/0606724.

[32]  S. F. Sánchez,et al.  Techniques for Reducing Fiber-fed and Integral-field Spectroscopy Data , 2006 .

[33]  M. Verheijen,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak , 2005, astro-ph/0512557.

[34]  A. Pellerin Massive Stellar Content of Giant H II Regions in M33 and M101 , 2005, astro-ph/0510686.

[35]  E. Perez,et al.  What is the temperature structure in the giant HII region NGC 588 , 2005, astro-ph/0509588.

[36]  C. Maraston,et al.  Young star cluster complexes in NGC 4038/39 - Integral field spectroscopy using VIMOS-VLT , 2005, astro-ph/0509249.

[37]  L. Dray,et al.  Wolf-Rayet and O star runaway populations from supernovae , 2005, astro-ph/0508448.

[38]  C. Giammanco,et al.  Effects of photon escape on diagnostic diagrams for H II regions , 2005, astro-ph/0504234.

[39]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[40]  N. Morrell,et al.  New giant H ii regions in the southern sky , 2005 .

[41]  C. Giammanco,et al.  The internal dynamical equilibrium of H II regions: A statistical study , 2004, astro-ph/0410484.

[42]  R. Delgado,et al.  On the importance of the few most massive stars: The ionizing cluster of NGC 588 , 2004, astro-ph/0407567.

[43]  Spain.,et al.  Propagation of ionizing radiation in Hii regions: the effects of optically thick density fluctuations , 2004, astro-ph/0405470.

[44]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[45]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[46]  C. Prieto,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[47]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[48]  E. Terlevich,et al.  A comprehensive study of reported high-metallicity giant H ii regions — II. Ionizing stellar populations , 2002, astro-ph/0208229.

[49]  M. Rieke,et al.  Massive Star Formation in Luminous Infrared Galaxies: Giant H II Regions and Their Relation to Super-Star Clusters , 2002, astro-ph/0203494.

[50]  M. Peimbert,et al.  Photoionization Models of NGC 346 , 2001, astro-ph/0109113.

[51]  Á. D́ıaz,et al.  A comprehensive study of reported high-metallicity giant H ii regions — I. Detailed abundance analysis , 2001, astro-ph/0109115.

[52]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[53]  E. Terlevich,et al.  Chemical abundances and ionizing clusters of H ii regions in the LINER galaxy NGC 4258 , 2000, astro-ph/0006193.

[54]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[55]  H. Kobulnicky,et al.  On Measuring Nebular Chemical Abundances in Distant Galaxies Using Global Emission-Line Spectra , 1998, astro-ph/9811006.

[56]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[57]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[58]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[59]  R. Terlevich,et al.  Supersonic Line Broadening and the Gas Dynamical Evolution of Giant HII Regions , 1996 .

[60]  P. Massey,et al.  The UV-brightest Stars of M33 and Its Nucleus: Discovery, Photometry, and Optical Spectroscopy , 1996 .

[61]  E. Skillman,et al.  The violent interstellar medium of NGC 604 , 1996 .

[62]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[63]  B. Madore,et al.  New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II, The Local Group galaxy M33 , 1991 .

[64]  T. Geballe,et al.  The molecular hydrogen content of NGC 604 and other M33 H II region complexes , 1990 .

[65]  E. Terlevich,et al.  The chemical composition gradient across M 33 , 1988 .

[66]  J. Melnick,et al.  Giant H II regions as distance indicators - I. Relations between global parameters for the local calibrators. , 1987 .

[67]  S. Veilleux,et al.  Spectral Classification of Emission-Line Galaxies , 1986 .

[68]  J. Kennicutt Structural properties of giant H II regions in nearby galaxies. , 1984 .

[69]  P. Conti,et al.  Wolf-Rayet stars in M33 , 1983 .

[70]  P. Conti,et al.  Wolf-Rayet stars and giant H II regions in M33 - Casual associations or meaningful relationships , 1981 .

[71]  Bernard E. J. Pagel,et al.  On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .

[72]  J. Melnick On the distribution of dust in giant extragalactic H II regions. , 1979 .

[73]  Sidney van den Bergh,et al.  The Galaxies of the Local Group , 1968 .

[74]  D. G. Hummer,et al.  Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8 , 1995 .

[75]  G. A. Shields Extragalactic H II Regions , 1990 .

[76]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[77]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[78]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .