Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella.

[1]  Giovanni Benelli,et al.  Research in mosquito control: current challenges for a brighter future , 2015, Parasitology Research.

[2]  G. Benelli,et al.  Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae) , 2015, Journal of Pest Science.

[3]  Jiang‐Shiou Hwang,et al.  Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus , 2015, Parasitology Research.

[4]  Flaviane Eva Magrini,et al.  Antifeedant activity and effects of fruits and seeds extracts of Cabralea canjerana canjerana (Vell.) Mart. (Meliaceae) on the immature stages of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) , 2015 .

[5]  G. Benelli,et al.  Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae) , 2015, Parasitology Research.

[6]  G. Benelli,et al.  Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? , 2015, Parasitology Research.

[7]  P. Perumal,et al.  Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae) , 2015, Parasitology Research.

[8]  G. Benelli,et al.  Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases , 2015, Parasitology Research.

[9]  Jiang‐Shiou Hwang,et al.  Bio-efficacy potential of seaweed Gracilaria firma with copepod, Megacyclops formosanus for the control larvae of dengue vector Aedes aegypti , 2014, Hydrobiologia.

[10]  S. Ignacimuthu,et al.  Antifeedant activity and toxicity of two alkaloids from Adhatoda vasica Nees leaves against diamondback moth Plutella xylostella (Linn.) (Lepidoptera: Plutellidae) larvae , 2014 .

[11]  A. A. Rahuman,et al.  Bioassay-guided isolation and characterization of active antiplasmodial compounds from Murraya koenigii extracts against Plasmodium falciparum and Plasmodium berghei , 2014, Parasitology Research.

[12]  Eveline Soares Costa,et al.  Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. , 2013, Journal of agricultural and food chemistry.

[13]  Seema B. Sharma,et al.  Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus , 2012 .

[14]  K. Murugan,et al.  Integration of botanicals and microbials for management of crop and human pests , 2012, Parasitology Research.

[15]  K. Murugan,et al.  Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. , 2012, Asian Pacific journal of tropical biomedicine.

[16]  C. Patil,et al.  Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi , 2012, Parasitology Research.

[17]  C. Rejeeth,et al.  Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. , 2012, Vector borne and zoonotic diseases.

[18]  M. Abai,et al.  Larvicidal activity of marine algae, Sargassum swartzii and Chondria dasyphylla, against malaria vector Anopheles stephensi. , 2011, Journal of vector borne diseases.

[19]  K. Shameli,et al.  Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L. , 2011, Molecules.

[20]  H. Cetin,et al.  Larvicidal Activity of the Extract of Seaweed, Caulerpa scalpelliformis, Against Culex pipiens , 2010, Journal of the American Mosquito Control Association.

[21]  S. Shrivastava,et al.  Label-free colorimetric estimation of proteins using nanoparticles of silver , 2010 .

[22]  N. Alikunhi,et al.  Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. , 2010, Colloids and surfaces. B, Biointerfaces.

[23]  A. Bhaumik,et al.  Nano-particles - A recent approach to insect pest control , 2010 .

[24]  R Sathyavathi,et al.  BIOSYNTHESIS OF SILVER NANOPARTICLES USING CORIANDRUM SATIVUM LEAF EXTRACT AND THEIR APPLICATION IN NONLINEAR OPTICS , 2010 .

[25]  C. Krishnaraj,et al.  Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. , 2010, Colloids and surfaces. B, Biointerfaces.

[26]  Ling Li,et al.  Synthesis and Photoluminescence Properties of Hierarchical Zinc Germanate Nanostructures , 2010 .

[27]  Ruchi Yadav,et al.  Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[28]  B. Kim,et al.  Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts , 2009 .

[29]  Ajay Misra,et al.  Green synthesis of silver nanoparticles using seed extract of Jatropha curcas , 2009 .

[30]  S. J. Inbaneson,et al.  Antimicrobial compounds from marine halophytes for silkworm disease treatment , 2009 .

[31]  Aseer Manilal,et al.  BIOPOTENTIALS OF SEAWEEDS COLLECTED FROM SOUTHWEST COAST OF INDIA , 2009 .

[32]  Jeffrey G. Scott,et al.  The effect of three environmental conditions on the fitness of cytochrome P450 monooxygenase-mediated permethrin resistance in Culex pipiens quinquefasciatus , 2009, BMC Evolutionary Biology.

[33]  Roseane Cristina Predes Trindade,et al.  Mortalidade de larvas de Plutella xylostella tratadas com extratos etanólicos de Aspidosperma pyrifolium , 2008 .

[34]  Kemin Wang,et al.  Preparation and antibacterial activity of Fe3O4@Ag nanoparticles , 2007 .

[35]  Donghoon Kang,et al.  Prediction method of hydrodynamic forces acting on the hull of a blunt-body ship in the even keel condition , 2007 .

[36]  Jiale Huang,et al.  Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf , 2007 .

[37]  Y. J. Zhu,et al.  Insecticidal activity and antifeedant effect of a new type biocide GCSC-BtA against Plutella xylostella L. (Lep., Plutellidae) , 2006, Journal of Pest Science.

[38]  Absar Ahmad,et al.  Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[39]  G. Schmahl,et al.  Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies , 2005, Parasitology Research.

[40]  Sihai Chen,et al.  Morphology effects on the optical properties of silver nanoparticles. , 2004, Journal of nanoscience and nanotechnology.

[41]  V. Ooi,et al.  Inhibitory effect of extracts of marine algae from Hong Kong against Herpes simplex viruses. , 2003 .

[42]  G. Gujar,et al.  Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes , 2003 .

[43]  J. Thacker,et al.  An Introduction to Arthropod Pest Control , 2002 .

[44]  S. Poopathi,et al.  Studies on Bacillus sphaericus toxicity-related resistance development and biology in the filariasis vector, Culex quinquefasciatus (Diptera: Culicidae) from South India , 2002 .

[45]  S. Dhara,et al.  Electrical transport studies of Ag nanoclusters embedded in glass matrix , 2001 .

[46]  F. Cui,et al.  A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. , 2000, Journal of biomedical materials research.

[47]  M. Sastry,et al.  Electrostatically Controlled Diffusion of Carboxylic Acid Derivatized Silver Colloidal Particles in Thermally Evaporated Fatty Amine Films , 1998 .

[48]  B. Das,et al.  Antispasmodic and anti-inflammatory activity of carrageenan from Hypnea musciformis wulfen , 1980 .

[49]  P. Moorthi,et al.  An Improved Insecticidal Activity of Silver Nanoparticle Synthesized by Using Sargassum muticum , 2014, Applied Biochemistry and Biotechnology.

[50]  J. Varshosaz,et al.  Synthesis of silver nanoparticle using Portulaca oleracea L. extracts , 2014 .

[51]  S. Ignacimuthu,et al.  Antifeedant and larvicidal activities of Acalypha fruticosa Forssk. (Euphorbiaceae) against Plutella xylostella L. (Lepidoptera: Yponomeutidae) larvae , 2011 .

[52]  A. Shelton,et al.  Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa , 2010 .

[53]  S. Ravikumar,et al.  Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens , 2010 .

[54]  J. Behari,et al.  Application of Nanoparticles in Waste Water Treatment , 2008 .

[55]  J. Selvin,et al.  BIOPOTENTIALS OF ULVA FASCIATA AND HYPNEA MUSCIFORMIS COLLECTED FROM THE PENINSULAR COAST OF INDIA , 2004 .

[56]  David S. Goodsell,et al.  Bionanotechnology: Lessons from Nature , 2004 .

[57]  R. Perry,et al.  Insecticides in Agriculture and Environment , 1998, Applied Agriculture.

[58]  V. Melo,et al.  Antifungal Properties of Proteins (Agglutinins) from the Red Alga Hypnea musciformis (Wulfen) Lamouroux. , 1997 .

[59]  Mustafa Shameel,et al.  A taxonomic study of some red algae commonly growing on the coast of Karachi , 1996 .

[60]  R. Makowski Effect of inoculum concentration, temperature, dew period, and plant growth stage on disease of round-leaved mallow and velvetleaf by Colletotrichum gloeosporioides f. sp. malvae , 1993 .

[61]  Anthony M. Shelton,et al.  Biology, Ecology, and Management of the Diamondback Moth , 1993 .

[62]  M. Darroudi,et al.  International Journal of Nanomedicine Dovepress Synthesis and Characterization of Silver/talc Nanocomposites Using the Wet Chemical Reduction Method , 2022 .