Probing the physical and mathematical structure of f(R)-gravity by PSR J0348 + 0432

There are several approaches to extend General Relativity in order to explain the phenomena related to the Dark Matter and Dark Energy. These theories, generally called Extended Theories of Gravity, can be tested using observations coming from relativistic binary systems as PSR J0348 + 0432. Using a class of analytical f(R)-theories, one can construct the first time derivative of orbital period of the binary systems starting from a quadrupolar gravitational emission. Our aim is to set boundaries on the parameters of the theory in order to understand if they are ruled out, or not, by the observations on PSR J0348 + 0432. Finally, we have computed an upper limit on the graviton mass showing that agree with constraint coming from other observations.

[1]  S. Capozziello,et al.  Effective field theory from modified gravity with massive modes , 2013, 1311.6319.

[2]  R. B. Barreiro,et al.  Planck 2013 results , 2014 .

[3]  S. Capozziello,et al.  Constraining f(R) gravity with Planck data on galaxy cluster profiles , 2013, 1310.0693.

[4]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[5]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[6]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[7]  I. D. Martino,et al.  Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars , 2013, 1302.0220.

[8]  Effective field theory from modified gravity with massive modes , 2013, 1311.6319.

[9]  S. Capozziello,et al.  The dark matter problem from f(R) gravity viewpoint , 2012 .

[10]  S. Capozziello,et al.  Running coupling in electroweak interactions of leptons from f(R)-gravity with torsion , 2012, 1202.3573.

[11]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[12]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[13]  S. Capozziello,et al.  Deriving the mass of particles from Extended Theories of Gravity in LHC era , 2011, 1105.6193.

[14]  P. Jetzer,et al.  Gravitational radiation in quadratic f(R) gravity , 2011, 1104.2200.

[15]  S. Capozziello,et al.  Quadrupolar gravitational radiation as a test-bed for f(R)-gravity , 2011, 1104.1942.

[16]  G. Olmo Palatini Approach to Modified Gravity: f(R) Theories and Beyond , 2011, 1101.3864.

[17]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[18]  J. Taylor,et al.  TIMING MEASUREMENTS OF THE RELATIVISTIC BINARY PULSAR PSR B1913+16 , 2010, 1011.0718.

[19]  J. Barrow,et al.  Observational Constraints on the Completeness of Space near Astrophysical Objects , 2010, 1001.4469.

[20]  S. Capozziello,et al.  Massive, massless and ghost modes of gravitational waves from higher-order gravity , 2009, 0911.3094.

[21]  S. Capozziello,et al.  A Bird's Eye View of f (R)-Gravity , 2009, 0909.4672.

[22]  Kenneth F. Kelton,et al.  The Classical Theory , 2010 .

[23]  S. Capozziello,et al.  Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity , 2008, 0812.1348.

[24]  S. Capozziello,et al.  f (R) gravity constrained by PPN parameters and stochastic background of gravitational waves , 2008, 0808.1335.

[25]  S. Capozziello,et al.  Massive gravitational waves from f(R) theories of gravity: Potential detection with LISA , 2008, 0812.2272.

[26]  S. Capozziello,et al.  Higher-order gravity and thecosmological background of gravitational waves" , 2007, 0712.2980.

[27]  J. Neill,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[28]  J. Barrow,et al.  The power of general relativity , 2005, gr-qc/0509059.

[29]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[30]  P. Sutton,et al.  Bounding the mass of the graviton using binary pulsar observations , 2001, gr-qc/0109049.

[31]  T. Damour,et al.  Gravitational wave versus binary - pulsar tests of strong field gravity , 1998, gr-qc/9803031.

[32]  K. Danzmann LISA: laser interferometer space antenna for gravitational wave measurements , 1996 .

[33]  T. Damour,et al.  Tensor-scalar gravity and binary-pulsar experiments. , 1996, Physical review. D, Particles and fields.

[34]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[35]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[36]  Marco Lops,et al.  The VIRGO Project: A wide band antenna for gravitational wave detection , 1990 .

[37]  Virginia Trimble,et al.  Existence and Nature of Dark Matter in the Universe , 1987 .

[38]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[39]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[40]  M. Veltman,et al.  Massive and mass-less Yang-Mills and gravitational fields , 1970 .

[41]  I. Shklovskii Possible Causes of the Secular Increase in Pulsar Periods. , 1970 .