Semiclassical resolvent estimates for bounded potentials

We study the cut-off resolvent of semiclassical Schr{\"o}dinger operators on $\mathbb{R}^d$ with bounded compactly supported potentials $V$. We prove that for real energies $\lambda^2$ in a compact interval in $\mathbb{R}_+$ and for any smooth cut-off function $\chi$ supported in a ball near the support of the potential $V$, for some constant $C>0$, one has \begin{equation*} \| \chi (-h^2\Delta + V-\lambda^2)^{-1} \chi \|_{L^2\to H^1} \leq C \,\mathrm{e}^{Ch^{-4/3}\log \frac{1}{h} }. \end{equation*} This bound shows in particular an upper bound on the imaginary parts of the resonances $\lambda$, defined as a pole of the meromorphic continuation of the resolvent $(-h^2\Delta + V-\lambda^2)^{-1}$ as an operator $L^2_{\mathrm{comp}}\to H^2_{\mathrm{loc}}$: any resonance $\lambda$ with real part in a compact interval away from $0$ has imaginary part at most \begin{equation*} \mathrm{Im} \lambda \leq - C^{-1} \,\mathrm{e}^{Ch^{-4/3}\log \frac{1}{h} }. \end{equation*} This is related to a conjecture by Landis: The principal Carleman estimate in our proof provides as well a lower bound on the decay rate of $L^2$ solutions $u$ to $-\Delta u = Vu$ with $0\not\equiv V\in L^{\infty}(\mathbb{R}^d)$. We show that there exist a constant $M>0$ such that for any such $u$, for $R>0$ sufficiently large, one has \begin{equation*} \int_{B(0,R+1)\backslash \overline{B(0,R)}}|u(x)|^2 dx \geq M^{-1}R^{-4/3} \mathrm{e}^{-M \|V\|_{\infty}^{2/3} R^{4/3}}\|u\|^2_2. \end{equation*}

[1]  M. Zworski Mathematical study of scattering resonances , 2016, 1609.03550.

[2]  Ivica Naki'c,et al.  Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators , 2016, 1609.01953.

[3]  Jacob Shapiro Semiclassical resolvent bounds in dimension two , 2016, Proceedings of the American Mathematical Society.

[4]  Martin Tautenhahn,et al.  Scale-free quantitative unique continuation and equidistribution estimates for solutions of elliptic differential equations , 2015, 1512.06347.

[5]  C. Kenig,et al.  The Landis Conjecture for variable coefficient second-order elliptic PDES , 2015, 1510.04762.

[6]  Ivica Naki'c,et al.  Scale-free uncertainty principles and Wegner estimates for random breather potentials , 2014, 1410.5273.

[7]  G. Vodev Semi‐classical resolvent estimates and regions free of resonances , 2014 .

[8]  K. Datchev Quantitative Limiting Absorption Principle in the Semiclassical Limit , 2013, 1309.1112.

[9]  Constanza Rojas-Molina,et al.  Scale-Free Unique Continuation Estimates and Applications to Random Schrödinger Operators , 2012, 1210.5623.

[10]  F. Klopp Resonances for large one-dimensional ''ergodic'' systems , 2012, 1210.1000.

[11]  A. Klein Unique Continuation Principle for Spectral Projections of Schrödinger Operators and Optimal Wegner Estimates for Non-ergodic Random Schrödinger Operators , 2012, Communications in Mathematical Physics.

[12]  J. Combes,et al.  An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators , 2006, math-ph/0605029.

[13]  J. Bourgain,et al.  On localization in the continuous Anderson-Bernoulli model in higher dimension , 2005 .

[14]  N. Burq Lower bounds for shape resonances widths of long range Schrödinger operators , 2002 .

[15]  G. Vodev,et al.  Uniform Estimates of the Resolvent of the Laplace-Beltrami Operator on Infinite Volume Riemannian Manifolds. II , 2002 .

[16]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[17]  V. Meshkov ON THE POSSIBLE RATE OF DECAY AT INFINITY OF SOLUTIONS OF SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS , 1992 .

[18]  G. Vodev Exponential bounds of the resolvent for a class of noncompactly supported perturbations of the Laplacian , 2000 .