Estimation of Total Biomass in Aleppo Pine Forest Stands Applying Parametric and Nonparametric Methods to Low-Density Airborne Laser Scanning Data

The account of total biomass can assist with the evaluation of climate regulation policies from local to global scales. This study estimates total biomass (TB), including tree and shrub biomass fractions, in Pinus halepensis Miller forest stands located in the Aragon Region (Spain) using Airborne Laser Scanning (ALS) data and fieldwork. A comparison of five selection methods and five regression models was performed to relate the TB, estimated in 83 field plots through allometric equations, to several independent variables extracted from ALS point cloud. A height threshold was used to include returns above 0.2 m when calculating ALS variables. The sample was divided into training and test sets composed of 62 and 21 plots, respectively. The model with the lower root mean square error (15.14 tons/ha) after validation was the multiple linear regression model including three ALS variables: the 25th percentile of the return heights, the variance, and the percentage of first returns above the mean. This study confirms the usefulness of low-density ALS data to accurately estimate total biomass, and thus better assess the availability of biomass and carbon content in a Mediterranean Aleppo pine forest.

[1]  Gherardo Chirici,et al.  Modeling Mediterranean forest structure using airborne laser scanning data , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[2]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[3]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[4]  R. Ruiz-Peinado,et al.  Contenido de Carbono en la biomasa de las principales especies de matorral y arbustedos de España , 2013 .

[5]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[6]  J. Riva,et al.  Assessment of Biomass and Carbon Content in a Mediterranean Aleppo Pine Forest Using ALS Data , 2015 .

[7]  Andrew Thomas Hudak,et al.  A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[8]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[9]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[10]  George Vosselman,et al.  Airborne and terrestrial laser scanning , 2011, Int. J. Digit. Earth.

[11]  Jorge García-Gutiérrez,et al.  Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest , 2016 .

[12]  Darío Domingo,et al.  Comparison of regression models to estimate biomass losses and CO2 emissions using low-density airborne laser scanning data in a burnt Aleppo pine forest , 2017 .

[13]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[14]  N. Coops,et al.  Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data , 2014 .

[15]  F. Wagner,et al.  Good Practice Guidance for Land Use, Land-Use Change and Forestry , 2003 .

[16]  C. Silva,et al.  A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data , 2016 .

[17]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[18]  Birger Solberg,et al.  Potential and Economic Efficiency of Carbon Sequestration in Forest Biomass Through Silvicultural Management , 1994 .

[19]  J. K. Hiers,et al.  Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics , 2009 .

[20]  H. Kaiser The Application of Electronic Computers to Factor Analysis , 1960 .

[21]  Alicia Troncoso Lora,et al.  A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables , 2015, Neurocomputing.

[22]  D. Jacob,et al.  Biomass‐burning emissions and associated haze layers over Amazonia , 1988 .

[23]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[24]  John F. Weishampel,et al.  Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes , 2015 .

[25]  Peter Bühlmann Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .

[26]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[27]  J. Estornella ESTIMATION OF BIOMASS AND VOLUME OF SHRUB VEGETATION USING LiDAR AND SPECTRAL DATA IN A MEDITERRANEAN ENVIRONMENT , 2015 .

[28]  Hailemariam Temesgen,et al.  A Comparison of Selected Parametric and Non-Parametric Imputation Methods for Estimating Forest Biomass and Basal Area , 2014 .

[29]  Natascha Kljun,et al.  Low-Density LiDAR and Optical Imagery for Biomass Estimation over Boreal Forest in Sweden , 2014 .

[30]  M. Río,et al.  Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region , 2015, European Journal of Forest Research.

[31]  Juan de la Riva,et al.  Interpolation Routines Assessment in ALS-Derived Digital Elevation Models for Forestry Applications , 2015, Remote. Sens..

[32]  F. M. Danson,et al.  Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .

[33]  Eduardo González-Ferreiro,et al.  Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .

[34]  David Pont,et al.  Modelling variation in Pinus radiata stem volume and outerwood stress-wave velocity from LiDAR metrics , 2013, New Zealand Journal of Forestry Science.

[35]  A. Fernández-Landa,et al.  Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements , 2012 .

[36]  Robert J. McGaughey,et al.  Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park , 2014 .

[37]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[38]  Ross A. Hill,et al.  Mapping woodland species composition and structure using airborne spectral and LiDAR data , 2005 .

[39]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[40]  Aihua Li,et al.  Lidar Aboveground Vegetation Biomass Estimates in Shrublands: Prediction, Uncertainties and Application to Coarser Scales , 2017, Remote. Sens..

[41]  S. K. Akagi,et al.  Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes , 2012 .

[42]  I. Gren,et al.  Policy design for forest carbon sequestration: A review of the literature , 2016 .

[43]  A. Hudak,et al.  Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability , 2009 .

[44]  Guoqing Sun,et al.  Use of ICESat GLAS data for forest disturbance studies in central Siberia , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[45]  Rattan Lal,et al.  Sequestration of atmospheric CO2 in global carbon pools , 2008 .

[46]  S. Ustin,et al.  Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging , 2007 .

[47]  R. E. Lee,et al.  Distribution-free multiple comparisons between successive treatments , 1995 .

[48]  Tarek Rashed,et al.  Urban tree damage estimation using airborne laser scanner data and geographic information systems: An example from 2007 Oklahoma ice storm , 2015 .

[49]  Borja Velázquez-Martí,et al.  Dendrometric and dasometric analysis of the bushy biomass in Mediterranean forests , 2010 .

[50]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[51]  Ricardo Ruiz-Peinado,et al.  New models for estimating the carbon sink capacity of Spanish softwood species , 2011 .

[52]  P. Watt,et al.  Use of LiDAR to estimate stand characteristics for thinning operations in young Douglas-fir plantations , 2013, New Zealand Journal of Forestry Science.

[53]  P. Crutzen,et al.  Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning , 1980 .

[54]  J. Eitel,et al.  High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery , 2016 .

[55]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[56]  Alberto García-Martín,et al.  Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest , 2016 .

[57]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[58]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[59]  M. Nilsson Estimation of tree heights and stand volume using an airborne lidar system , 1996 .

[60]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[61]  Alistair M. S. Smith,et al.  Discrete Return Lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables , 2009, Remote. Sens..

[62]  Saso Dzeroski,et al.  Estimating vegetation height and canopy cover from remotely sensed data with machine learning , 2010, Ecol. Informatics.

[63]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[64]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[65]  D. Stow,et al.  Mapping fuels at the wildland-urban interface using colour ortho-images and LiDAR data , 2014 .

[66]  E. Næsset,et al.  Forestry applications of airborne laser scanning : concepts and case studies , 2014 .

[67]  W. Cohen,et al.  Estimating forest aboveground biomass by low density lidar data in mixed broad-leaved forests in the Italian Pre-Alps , 2015, Forest Ecosystems.

[68]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[69]  Laura Chasmer,et al.  Vegetation class dependent errors in lidar ground elevation and canopy height estimates in a boreal wetland environment , 2005 .

[70]  Michael J. Olsen,et al.  Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest , 2012 .

[71]  L. A. Ruiza,et al.  Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area , 2015 .

[72]  Alessandro Montaghi,et al.  A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics , 2015, Comput. Electron. Agric..

[73]  Alan J. Miller Subset Selection in Regression , 1992 .

[74]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[75]  Robert J. McGaughey,et al.  Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park , 2013 .

[76]  Kaiguang Zhao,et al.  Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues , 2010, Remote. Sens..

[77]  R. Hill,et al.  Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .

[78]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[79]  José Cristóbal Riquelme Santos,et al.  Evolutionary feature selection to estimate forest stand variables using LiDAR , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[80]  A. García-Martín,et al.  Using low-density discrete Airborne Laser Scanning data to assess the potential carbon dioxide emission in case of a fire event in a Mediterranean pine forest , 2017 .

[81]  Eija Honkavaara,et al.  Automatic Storm Damage Detection in Forests Using High-Altitude Photogrammetric Imagery , 2013, Remote. Sens..