Estimation of Total Biomass in Aleppo Pine Forest Stands Applying Parametric and Nonparametric Methods to Low-Density Airborne Laser Scanning Data
暂无分享,去创建一个
Juan de la Riva | Alberto García-Martín | Antonio Luis Montealegre | Darío Domingo | J. Riva | D. Domingo | A. L. Montealegre | M. T. Lamelas | A. García-Martín
[1] Gherardo Chirici,et al. Modeling Mediterranean forest structure using airborne laser scanning data , 2017, Int. J. Appl. Earth Obs. Geoinformation.
[2] I. Burke,et al. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .
[3] S. Ustin,et al. Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .
[4] R. Ruiz-Peinado,et al. Contenido de Carbono en la biomasa de las principales especies de matorral y arbustedos de España , 2013 .
[5] Andy Liaw,et al. Classification and Regression by randomForest , 2007 .
[6] J. Riva,et al. Assessment of Biomass and Carbon Content in a Mediterranean Aleppo Pine Forest Using ALS Data , 2015 .
[7] Andrew Thomas Hudak,et al. A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments , 2007, IEEE Transactions on Geoscience and Remote Sensing.
[8] R. Tibshirani,et al. Regression shrinkage and selection via the lasso: a retrospective , 2011 .
[9] Jungho Im,et al. Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .
[10] George Vosselman,et al. Airborne and terrestrial laser scanning , 2011, Int. J. Digit. Earth.
[11] Jorge García-Gutiérrez,et al. Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest , 2016 .
[12] Darío Domingo,et al. Comparison of regression models to estimate biomass losses and CO2 emissions using low-density airborne laser scanning data in a burnt Aleppo pine forest , 2017 .
[13] S. Popescu,et al. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .
[14] N. Coops,et al. Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data , 2014 .
[15] F. Wagner,et al. Good Practice Guidance for Land Use, Land-Use Change and Forestry , 2003 .
[16] C. Silva,et al. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data , 2016 .
[17] R. B. Jackson,et al. A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.
[18] Birger Solberg,et al. Potential and Economic Efficiency of Carbon Sequestration in Forest Biomass Through Silvicultural Management , 1994 .
[19] J. K. Hiers,et al. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics , 2009 .
[20] H. Kaiser. The Application of Electronic Computers to Factor Analysis , 1960 .
[21] Alicia Troncoso Lora,et al. A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables , 2015, Neurocomputing.
[22] D. Jacob,et al. Biomass‐burning emissions and associated haze layers over Amazonia , 1988 .
[23] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[24] John F. Weishampel,et al. Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes , 2015 .
[25] Peter Bühlmann. Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .
[26] David C. Van Essen,et al. Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..
[27] J. Estornella. ESTIMATION OF BIOMASS AND VOLUME OF SHRUB VEGETATION USING LiDAR AND SPECTRAL DATA IN A MEDITERRANEAN ENVIRONMENT , 2015 .
[28] Hailemariam Temesgen,et al. A Comparison of Selected Parametric and Non-Parametric Imputation Methods for Estimating Forest Biomass and Basal Area , 2014 .
[29] Natascha Kljun,et al. Low-Density LiDAR and Optical Imagery for Biomass Estimation over Boreal Forest in Sweden , 2014 .
[30] M. Río,et al. Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region , 2015, European Journal of Forest Research.
[31] Juan de la Riva,et al. Interpolation Routines Assessment in ALS-Derived Digital Elevation Models for Forestry Applications , 2015, Remote. Sens..
[32] F. M. Danson,et al. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .
[33] Eduardo González-Ferreiro,et al. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .
[34] David Pont,et al. Modelling variation in Pinus radiata stem volume and outerwood stress-wave velocity from LiDAR metrics , 2013, New Zealand Journal of Forestry Science.
[35] A. Fernández-Landa,et al. Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements , 2012 .
[36] Robert J. McGaughey,et al. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park , 2014 .
[37] M. Flood,et al. LiDAR remote sensing of forest structure , 2003 .
[38] Ross A. Hill,et al. Mapping woodland species composition and structure using airborne spectral and LiDAR data , 2005 .
[39] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[40] Aihua Li,et al. Lidar Aboveground Vegetation Biomass Estimates in Shrublands: Prediction, Uncertainties and Application to Coarser Scales , 2017, Remote. Sens..
[41] S. K. Akagi,et al. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes , 2012 .
[42] I. Gren,et al. Policy design for forest carbon sequestration: A review of the literature , 2016 .
[43] A. Hudak,et al. Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability , 2009 .
[44] Guoqing Sun,et al. Use of ICESat GLAS data for forest disturbance studies in central Siberia , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.
[45] Rattan Lal,et al. Sequestration of atmospheric CO2 in global carbon pools , 2008 .
[46] S. Ustin,et al. Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging , 2007 .
[47] R. E. Lee,et al. Distribution-free multiple comparisons between successive treatments , 1995 .
[48] Tarek Rashed,et al. Urban tree damage estimation using airborne laser scanner data and geographic information systems: An example from 2007 Oklahoma ice storm , 2015 .
[49] Borja Velázquez-Martí,et al. Dendrometric and dasometric analysis of the bushy biomass in Mediterranean forests , 2010 .
[50] W. Cleveland,et al. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .
[51] Ricardo Ruiz-Peinado,et al. New models for estimating the carbon sink capacity of Spanish softwood species , 2011 .
[52] P. Watt,et al. Use of LiDAR to estimate stand characteristics for thinning operations in young Douglas-fir plantations , 2013, New Zealand Journal of Forestry Science.
[53] P. Crutzen,et al. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning , 1980 .
[54] J. Eitel,et al. High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery , 2016 .
[55] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[56] Alberto García-Martín,et al. Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest , 2016 .
[57] Jungho Im,et al. Support vector machines in remote sensing: A review , 2011 .
[58] J. Randerson,et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .
[59] M. Nilsson. Estimation of tree heights and stand volume using an airborne lidar system , 1996 .
[60] F. M. Danson,et al. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .
[61] Alistair M. S. Smith,et al. Discrete Return Lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables , 2009, Remote. Sens..
[62] Saso Dzeroski,et al. Estimating vegetation height and canopy cover from remotely sensed data with machine learning , 2010, Ecol. Informatics.
[63] H. Kaiser. The varimax criterion for analytic rotation in factor analysis , 1958 .
[64] E. Næsset,et al. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .
[65] D. Stow,et al. Mapping fuels at the wildland-urban interface using colour ortho-images and LiDAR data , 2014 .
[66] E. Næsset,et al. Forestry applications of airborne laser scanning : concepts and case studies , 2014 .
[67] W. Cohen,et al. Estimating forest aboveground biomass by low density lidar data in mixed broad-leaved forests in the Italian Pre-Alps , 2015, Forest Ecosystems.
[68] J. Means. Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .
[69] Laura Chasmer,et al. Vegetation class dependent errors in lidar ground elevation and canopy height estimates in a boreal wetland environment , 2005 .
[70] Michael J. Olsen,et al. Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest , 2012 .
[71] L. A. Ruiza,et al. Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area , 2015 .
[72] Alessandro Montaghi,et al. A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics , 2015, Comput. Electron. Agric..
[73] Alan J. Miller. Subset Selection in Regression , 1992 .
[74] B. Koch,et al. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .
[75] Robert J. McGaughey,et al. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park , 2013 .
[76] Kaiguang Zhao,et al. Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues , 2010, Remote. Sens..
[77] R. Hill,et al. Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .
[78] S. K. Akagi,et al. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .
[79] José Cristóbal Riquelme Santos,et al. Evolutionary feature selection to estimate forest stand variables using LiDAR , 2014, Int. J. Appl. Earth Obs. Geoinformation.
[80] A. García-Martín,et al. Using low-density discrete Airborne Laser Scanning data to assess the potential carbon dioxide emission in case of a fire event in a Mediterranean pine forest , 2017 .
[81] Eija Honkavaara,et al. Automatic Storm Damage Detection in Forests Using High-Altitude Photogrammetric Imagery , 2013, Remote. Sens..