Physical scale modeling the millimeter-wave backscattering behavior of ground clutter

The VV-polarized W-band backscattering behavior of homogeneous ground clutter has been investigated by measuring the radar cross section per unit area of 1/16th scale rough surface terrain in a 1.56 THz compact radar range. An array of scale model ground planes was fabricated with the appropriate roughness to model smooth to rough soil terrain. In addition to studying the backscattering behavior as a function of surface roughness, the dependence on soil moisture content was also characterized by tailoring the dielectric constant of the scale models. Radar imagery of the rough surfaces were acquired in a 1.56THz compact radar range by collecting single frequency backscatter data over a solid angle in both azimuth and elevation. The data were Fourier transformed in both the azimuth and elevation directions to produce two-dimensional imagery. The backscattering coefficient per unit illuminated area ((sigma) 0) was calculated as a function of elevation angle between 5 degree(s) and 85 degree(s). The results of this work have been used in the fabrication of scale model ground planes for collection of W-band radar imagery from scaled threat targets in realistic environments. Backscattering data, including clutter statistics, are compared to W-band clutter data found in the literature.