A ranking system based on inverse data envelopment analysis

Inverse (DEA) is an approach to estimate the expected input/output variation levels when the efficiency score reminds unchanged. Essentially, finding most efficient decision-making units (DMUs) or ranking units is an important problem in DEA. A new ranking system for ordering extreme efficient units based on inverse DEA is introduced in this article. In the adopted method, here the amount of required increment of inputs by increasing the outputs of the unit under evaluation is obtained through the proposed models. By obtaining these variations, this proposed methodology enables the researcher to rank the efficient DMUs in an appropriate manner. Through the analytical theorem, it is proved that suggested models here are feasible. These newly introduced models are validated through a data set of commercial banks and a numerical example.

[1]  Ali Emrouznejad,et al.  A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries , 2018, J. Oper. Res. Soc..

[2]  Ali Emrouznejad,et al.  Minor and major consolidations in inverse DEA: Definition and determination , 2017, Comput. Ind. Eng..

[3]  Shabnam Razavyan,et al.  Ranking using l1-norm in data envelopment analysis , 2004, Appl. Math. Comput..

[4]  Fariborz Jolai,et al.  A hybrid ranking approach based on fuzzy analytical hierarchy process and data envelopment analysis: Road maintenance and transport organization of Iran , 2018, J. Intell. Fuzzy Syst..

[5]  Amar Oukil,et al.  Ranking via composite weighting schemes under a DEA cross-evaluation framework , 2018, Comput. Ind. Eng..

[6]  Josef Jablonsky,et al.  Multicriteria approaches for ranking of efficient units in DEA models , 2012, Central Eur. J. Oper. Res..

[7]  F. Hosseinzadeh Lotfi,et al.  A new DEA ranking system based on changing the reference set , 2007, Eur. J. Oper. Res..

[8]  W. Cook,et al.  A multiple criteria decision model with ordinal preference data , 1991 .

[9]  Ruiyue Lin,et al.  Modified super-efficiency DEA models for solving infeasibility under non-negative data set , 2018, INFOR Inf. Syst. Oper. Res..

[10]  I. Contreras,et al.  Optimizing the rank position of the DMU as secondary goal in DEA cross-evaluation , 2012 .

[11]  Jin-Xiao Chen,et al.  A cross-dependence based ranking system for efficient and inefficient units in DEA , 2011, Expert Syst. Appl..

[12]  Ying-Ming Wang,et al.  Ranking DMUs by using the upper and lower bounds of the normalized efficiency in data envelopment analysis , 2018, Comput. Ind. Eng..

[13]  Saeid Ghobadi,et al.  Inverse DEA: Review, Extension and Application , 2015, Int. J. Inf. Technol. Decis. Mak..

[14]  Wilhelm Rödder,et al.  A consensual peer-based DEA-model with optimized cross-efficiencies - Input allocation instead of radial reduction , 2011, Eur. J. Oper. Res..

[15]  Jiazhen Huo,et al.  Super-efficiency based on a modified directional distance function , 2013 .

[16]  Allen N. Berger,et al.  Efficiency of financial institutions: International survey and directions for future research , 1997 .

[17]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[18]  Mohsen Rostamy-Malkhalifeh,et al.  A Review of Ranking Models in Data Envelopment Analysis , 2013, J. Appl. Math..

[19]  Shabnam Razavyan,et al.  The outputs estimation of a DMU according to improvement of its efficiency , 2004, Appl. Math. Comput..

[20]  Jie Wu,et al.  DEA cross-efficiency evaluation based on Pareto improvement , 2016, Eur. J. Oper. Res..

[21]  Satoshi Washio,et al.  Evaluation method based on ranking in data envelopment analysis , 2013, Expert Syst. Appl..

[22]  Shu-Cherng Fang,et al.  Inverse data envelopment analysis model to preserve relative efficiency values: The case of variable returns to scale , 2011, Comput. Ind. Eng..

[23]  A. Hatami-Marbini,et al.  An inverse optimization model for imprecise data envelopment analysis , 2015 .

[24]  Mehdi Toloo,et al.  A combined goal programming and inverse DEA method for target setting in mergers , 2019, Expert Syst. Appl..

[25]  Saeid Ghobadi,et al.  Inverse DEA under inter-temporal dependence using multiple-objective programming , 2015, Eur. J. Oper. Res..

[26]  Reza Farzipoor Saen,et al.  Assessing sustainability of supply chains: An inverse network dynamic DEA model , 2019, Comput. Ind. Eng..

[27]  Liang Liang,et al.  Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis , 2009 .

[28]  Shabnam Razavyan,et al.  Input estimation and identification of extra inputs in inverse DEA models , 2004, Appl. Math. Comput..

[29]  Alireza Amirteimoori,et al.  Ranking of decision making units in data envelopment analysis: A distance-based approach , 2005, Appl. Math. Comput..

[30]  M. Rostamy-Malkhalifeh,et al.  Using Enhanced Russell Model to Solve Inverse Data Envelopment Analysis Problems , 2014, TheScientificWorldJournal.

[31]  Hong Yan,et al.  DEA models for resource reallocation and production input/output estimation , 2002, Eur. J. Oper. Res..

[32]  F. Hosseinzadeh Lotfi,et al.  Selecting symmetric weights as a secondary goal in DEA cross-efficiency evaluation , 2011 .

[33]  M. J. Rezaeiani,et al.  Ranking efficient decision making units in data envelopment analysis based on reference frontier share , 2018, Eur. J. Oper. Res..

[34]  Tony Prato,et al.  Selecting farming systems using a new multiple criteria decision model: the balancing and ranking method , 2002 .

[35]  Jie Wu,et al.  Extended secondary goal models for weights selection in DEA cross-efficiency evaluation , 2016, Comput. Ind. Eng..

[36]  Clara Simón de Blas,et al.  Combined social networks and data envelopment analysis for ranking , 2018, Eur. J. Oper. Res..

[37]  Mojtaba Ghiyasi,et al.  Inverse DEA based on cost and revenue efficiency , 2017, Comput. Ind. Eng..

[38]  Abraham Charnes,et al.  A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the U.S. air forces , 1984, Ann. Oper. Res..

[39]  Gholam Reza Jahanshahloo,et al.  A Complete Efficiency Ranking of Decision Making Units in Data Envelopment Analysis , 1999, Comput. Optim. Appl..

[40]  M. Zarepisheh,et al.  Modified MAJ model for ranking decision making units in data envelopment analysis , 2006, Appl. Math. Comput..

[41]  Jianzhong Zhang,et al.  An inverse DEA model for inputs/outputs estimate , 2000, Eur. J. Oper. Res..

[42]  Shanling Li,et al.  A super-efficiency model for ranking efficient units in data envelopment analysis , 2007, Appl. Math. Comput..

[43]  S. Ghobadi Inverse DEA Using Enhanced Russell Measure in the Presence of Fuzzy Data , 2018 .

[44]  Shuhong Wang,et al.  The global system‐ranking efficiency model and calculating examples with consideration of the nonhomogeneity of decision‐making units , 2020, Expert Syst. J. Knowl. Eng..

[45]  A. Hadi-Vencheh,et al.  A DEA model for resource allocation , 2008 .

[46]  T. Sexton,et al.  Data Envelopment Analysis: Critique and Extensions , 1986 .

[47]  Ali Asghar Foroughi,et al.  A generalized DEA model for inputs/outputs estimation , 2006, Math. Comput. Model..

[48]  Adel Hatami-Marbini,et al.  A modified super-efficiency in the range directional model , 2018, Comput. Ind. Eng..

[49]  S. M. Muzakkir,et al.  A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals , 2018, Comput. Ind. Eng..

[50]  Herbert F. Lewis,et al.  Resolving the deposit dilemma: A new DEA bank efficiency model , 2011 .

[51]  P. Andersen,et al.  A procedure for ranking efficient units in data envelopment analysis , 1993 .

[52]  Fanyong Meng,et al.  Interval cross efficiency for fully ranking decision making units using DEA/AHP approach , 2018, Ann. Oper. Res..

[53]  Xiaoya Li,et al.  A Comprehensive Dea Approach for the Resource Allocation Problem based on Scale Economies Classification , 2008, J. Syst. Sci. Complex..

[54]  Mu-Chen Chen,et al.  Ranking discovered rules from data mining with multiple criteria by data envelopment analysis , 2007, Expert Syst. Appl..

[55]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[56]  S. Managi,et al.  The technical efficiency of the Japanese banks : non-radial directional performance measurement with undesirable output , 2012 .

[57]  F. Hosseinzadeh Lotfi,et al.  RANKING EFFICIENT DMUS USING THE TCHEBYCHEFF NORM , 2012 .

[58]  Shiang-Tai Liu,et al.  A DEA ranking method based on cross-efficiency intervals and signal-to-noise ratio , 2018, Ann. Oper. Res..

[59]  F. Hosseinzadeh Lotfi,et al.  One DEA ranking method based on applying aggregate units , 2011, Expert Syst. Appl..

[60]  Asmita Chitnis,et al.  Efficiency ranking method using DEA and TOPSIS (ERM-DT): case of an Indian bank , 2016 .

[61]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[62]  Guoliang Yang,et al.  Cross-efficiency evaluation in data envelopment analysis based on prospect theory , 2019, Eur. J. Oper. Res..

[63]  M. R. Alirezaee,et al.  A complete ranking of DMUs using restrictions in DEA models , 2007, Appl. Math. Comput..

[64]  Fuh-Hwa Franklin Liu,et al.  Ranking of units on the DEA frontier with common weights , 2008, Comput. Oper. Res..

[65]  Nuria Ramón,et al.  Reducing differences between profiles of weights: A "peer-restricted" cross-efficiency evaluation , 2011 .

[66]  Ali Emrouznejad,et al.  A new inverse DEA method for merging banks , 2014 .

[67]  Gholam R. Amin,et al.  A new inverse data envelopment analysis model for mergers with negative data , 2016 .