A stochastic filter for fluid motion tracking
暂无分享,去创建一个
[1] A. Leonard. Vortex methods for flow simulation , 1980 .
[2] Michael Isard,et al. CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.
[3] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[4] A. Chorin. Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.
[5] Joachim Weickert,et al. Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.
[6] Patrick Pérez,et al. Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[7] Gunnar Farnebäck. Very high accuracy velocity estimation using orientation tensors , 2001, ICCV 2001.
[8] David J. Fleet,et al. Performance of optical flow techniques , 1994, International Journal of Computer Vision.
[9] Étienne Mémin,et al. Optimal Importance Sampling for Tracking in Image Sequences: Application to Point Tracking , 2004, ECCV.
[10] Anne Cuzol,et al. Vortex and Source Particles for Fluid Motion Estimation , 2005, Scale-Space.
[11] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[12] Patrick Pérez,et al. Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.
[13] B. Øksendal. Stochastic Differential Equations , 1985 .
[14] P. Protter,et al. The Monte-Carlo method for filtering with discrete-time observations , 2001 .
[15] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] Isabelle Herlin,et al. A generalized optical flow constraint and its physical interpretation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).