miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes

[1]  M. Makki,et al.  MicroRNA‐9 Promotion of Interleukin‐6 Expression by Inhibiting Monocyte Chemoattractant Protein–Induced Protein 1 Expression in Interleukin‐1β–Stimulated Human Chondrocytes , 2015, Arthritis & rheumatology.

[2]  M. Makki,et al.  MicroRNA‐602 and MicroRNA‐608 Regulate Sonic Hedgehog Expression via Target Sites in the Coding Region in Human Chondrocytes , 2015, Arthritis & rheumatology.

[3]  M. Makki,et al.  Micro RNA-9 (miR-9) promote IL-6 expression by targeting MCPIP1 in IL-1β-stimulated human chondrocytes , 2014 .

[4]  M. Makki,et al.  MCPIP1 regulates the expression of interleukin-6 in human osteoarthritis chondrocytes , 2014 .

[5]  M. Makki,et al.  Modulation of Ten-Eleven Translocation 1 (TET1), Isocitrate Dehydrogenase (IDH) Expression, α-Ketoglutarate (α-KG), and DNA Hydroxymethylation Levels by Interleukin-1β in Primary Human Chondrocytes* , 2014, The Journal of Biological Chemistry.

[6]  Ying Sun,et al.  MiR‐139 Inhibits Mcl‐1 Expression and Potentiates TMZ‐Induced Apoptosis in Glioma , 2013, CNS neuroscience & therapeutics.

[7]  G. M. Wilson,et al.  Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. , 2013, Biochimica et biophysica acta.

[8]  S. Akira,et al.  mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. , 2013, Biochimica et biophysica acta.

[9]  V. Huff,et al.  Ubiquitin specific protease 18 (Usp18) is a WT1 transcriptional target. , 2013, Experimental cell research.

[10]  A. Haseeb,et al.  Immunopathogenesis of osteoarthritis. , 2013, Clinical immunology.

[11]  Wei Zhang,et al.  MCPIP1 Down-Regulates IL-2 Expression through an ARE-Independent Pathway , 2012, PloS one.

[12]  Xiaozhong Peng,et al.  The CREB-miR-9 Negative Feedback Minicircuitry Coordinates the Migration and Proliferation of Glioma Cells , 2012, PloS one.

[13]  Jianjun Zhang,et al.  Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. , 2012, The international journal of biochemistry & cell biology.

[14]  S. Miyaki,et al.  Macro view of microRNA function in osteoarthritis , 2012, Nature Reviews Rheumatology.

[15]  岩﨑 秀典 The IκB Kinase Complex Regulates the Stability of Cytokine-Encoding mRNA Induced by TLR-IL-1R by Controlling Degradation of Regnase-1 , 2012 .

[16]  Anton J. Enright,et al.  MicroRNA-9 Inhibition of Cell Proliferation and Identification of Novel miR-9 Targets by Transcriptome Profiling in Breast Cancer Cells* , 2012, The Journal of Biological Chemistry.

[17]  R. Boot-Handford,et al.  The expression and function of microRNAs in chondrogenesis and osteoarthritis. , 2012, Arthritis and rheumatism.

[18]  Denis Thieffry,et al.  miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors. , 2012, Developmental cell.

[19]  T. Shimamura,et al.  Interleukin‐6 upregulates expression of ADAMTS‐4 in fibroblast‐like synoviocytes from patients with rheumatoid arthritis , 2012, International journal of rheumatic diseases.

[20]  M. Goldring,et al.  Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. , 2012, Trends in molecular medicine.

[21]  Osamu Takeuchi,et al.  The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1 , 2011, Nature Immunology.

[22]  N. D’Silva,et al.  Tristetraprolin regulates interleukin-6 expression through p38 MAPK-dependent affinity changes with mRNA 3' untranslated region. , 2011, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[23]  N. Akhtar,et al.  Pomegranate extract inhibits the interleukin-1β-induced activation of MKK-3, p38α-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes , 2010, Arthritis Research & Therapy.

[24]  S. Takada,et al.  MicroRNA-140 plays dual roles in both cartilage development and homeostasis. , 2010, Genes & development.

[25]  F. Voss,et al.  MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. , 2010, Arthritis and rheumatism.

[26]  A. Kasza,et al.  Interleukin‐1‐inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL‐1β mRNA , 2009, The FEBS journal.

[27]  M. Hashizume,et al.  Desirable effect of combination therapy with high molecular weight hyaluronate and NSAIDs on MMP production. , 2009, Osteoarthritis and cartilage.

[28]  A. N. Anbazhagan,et al.  Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-α and matrix metalloproteinase-13 in human chondrocytes , 2009, Arthritis research & therapy.

[29]  Haruki Nakamura,et al.  Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay , 2009, Nature.

[30]  C. L. Murphy,et al.  The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. , 2009, Osteoarthritis and cartilage.

[31]  P. Dimitrova,et al.  Inflammatory response in patients with active and inactive osteoarthritis , 2009, Rheumatology International.

[32]  C. Englert,et al.  TSA downregulates Wilms tumor gene 1 (Wt1) expression at multiple levels , 2008, Nucleic acids research.

[33]  P. Anderson Post-transcriptional control of cytokine production , 2008, Nature Immunology.

[34]  F. Mallein-Gerin,et al.  Interleukin-6 (IL-6) and/or Soluble IL-6 Receptor Down-regulation of Human Type II Collagen Gene Expression in Articular Chondrocytes Requires a Decrease of Sp1·Sp3 Ratio and of the Binding Activity of Both Factors to the COL2A1 Promoter* , 2008, Journal of Biological Chemistry.

[35]  A. McMahon,et al.  Dicer-dependent pathways regulate chondrocyte proliferation and differentiation , 2008, Proceedings of the National Academy of Sciences.

[36]  P. Delmas,et al.  Biological markers in osteoarthritis , 2007, Nature Clinical Practice Rheumatology.

[37]  V. Kraus,et al.  A longitudinal analysis of serum cytokines in the Hartley guinea pig model of osteoarthritis. , 2007, Osteoarthritis and cartilage.

[38]  L. Kühn,et al.  Destabilization of Interleukin-6 mRNA Requires a Putative RNA Stem-Loop Structure, an AU-Rich Element, and the RNA-Binding Protein AUF1 , 2006, Molecular and Cellular Biology.

[39]  C. Ding,et al.  Anti-interleukin-6 receptor antibody treatment in inflammatory autoimmune diseases. , 2006, Reviews on recent clinical trials.

[40]  Mahua Choudhury,et al.  Monocyte Chemoattractant Protein-1 Induces a Novel Transcription Factor That Causes Cardiac Myocyte Apoptosis and Ventricular Dysfunction , 2006, Circulation research.

[41]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[42]  S. Goldring,et al.  The role of cytokines in cartilage matrix degeneration in osteoarthritis. , 2004, Clinical orthopaedics and related research.

[43]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[44]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[45]  J. Heath,et al.  Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown. , 2001, Arthritis and rheumatism.

[46]  T. Salo,et al.  Expression and induction of collagenases (MMP‐8 and ‐13) in plasma cells associated with bone‐destructive lesions , 2001, The Journal of pathology.

[47]  S. Kaneko,et al.  Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis. , 2000, Cytokines, cellular & molecular therapy.

[48]  M. Goldring,et al.  The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint. , 1998, Arthritis and rheumatism.

[49]  J. Darnell,et al.  Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. , 1994, Science.

[50]  F. Houssiau,et al.  Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. , 1988, Arthritis and rheumatism.