An efficient case for computing minimum linear arboricity with small maximum degree

Graph coloring has interesting applications in optimization, calculation of Hessian matrix, network design and so on. In this paper, we consider an improper edge coloring which is one important coloring-linear arboricity. For a graph G, a linear forest is a disjoint union of paths and cycles. The linear arboricity la(G) is the minimum number of disjoint linear forests such that their union is exactly the edge set of G. In this paper, we study a special case that G is a simple planar graph with two not adjacent cycles each with a chordal and length between 4 and 7. We show that in this special case, $$la(G)=\lceil \frac{\Delta }{2}\rceil $$la(G)=⌈Δ2⌉ where $$\Delta $$Δ is the maximum vertex degree of G and $$\Delta \ge 7$$Δ≥7.

[1]  Sanming Zhou,et al.  The L(2,1)-labelling problem for cubic Cayley graphs on dihedral groups , 2013, J. Comb. Optim..

[2]  Jian-Liang Wu,et al.  The linear arboricity of planar graphs of maximum degree seven is four , 2008 .

[3]  Yuanchao Li,et al.  The linear 2-arboricity of sparse graphs , 2017, Discret. Math. Algorithms Appl..

[4]  F. Harary,et al.  Covering and packing in graphs. III: Cyclic and acyclic invariants , 1980 .

[5]  Frédéric Havet,et al.  Enumerating the edge-colourings and total colourings of a regular graph , 2013, J. Comb. Optim..

[6]  Jianfeng Hou,et al.  A Note on The Linear Arboricity of Planar Graphs without 4-Cycles∗ , 2009 .

[7]  Fabrizio Frati,et al.  Acyclically 3-colorable planar graphs , 2010, J. Comb. Optim..

[8]  Jianfeng Hou,et al.  A Planar linear arboricity conjecture , 2009, J. Graph Theory.

[9]  B. Péroche,et al.  Complexité de l'arboricité linéaire d'un graphe , 1982 .

[10]  Pekka Orponen,et al.  Optimal Approximations and Polynomially Levelable Sets , 1986, SIAM J. Comput..

[11]  Panos M. Pardalos,et al.  Minimum total coloring of planar graph , 2014, J. Glob. Optim..

[12]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[13]  Jian-Liang Wu,et al.  On the linear arboricity of planar graphs , 1999 .

[14]  Weili Wu,et al.  Minimum number of disjoint linear forests covering a planar graph , 2014, J. Comb. Optim..

[15]  Frank Harary,et al.  Covering and packing in graphs IV: Linear arboricity , 1981, Networks.

[16]  Bin Liu,et al.  On the linear arboricity of graphs embeddable in surfaces , 2014, Inf. Process. Lett..

[17]  Weili Wu,et al.  Total coloring of planar graphs without adjacent short cycles , 2017, J. Comb. Optim..

[18]  N. Alon The linear arboricity of graphs , 1988 .

[19]  Weili Wu,et al.  A note on the minimum number of choosability of planar graphs , 2016, J. Comb. Optim..

[20]  Noga Alon,et al.  Linear Arboricity and Linear k-Arboricity of Regular Graphs , 2001, Graphs Comb..

[21]  Deying Li,et al.  Coloring of Double Disk Graphs , 2004, J. Glob. Optim..

[22]  Jianliang Wu,et al.  The Linear Arboricity of Series-Parallel Graphs , 2000, Graphs Comb..