Fault-tolerant multi-level logic decoder for nanoscale crossbar memory arrays

Several technologies with sub-lithographic features are targeting the fabrication of crossbar memories in which the nanowire decoder is playing a major role. In this paper, we suggest a way to reduce the decoder size and keep it defect tolerant by using multiple threshold voltages (V T), which is enabled by our underlying technology. We define two types of multi-valued decoders and model the defects they undergo due to the V T variation. Multi-valued hot decoders yield better area saving than n-ary reflexive codes (NRC), and under severe conditions, NRC enables a non-vanishing part of the code space to recover. There are many combinations of decoder type and number of V T's yielding equal effective memory capacities. The optimal choice saves area up to 24%. We also show that the precision of the addressing voltages for decoders with unreliable V T's is a crucial parameter for the decoder design and permits large savings in memory area.

[1]  Michael J. Wilson,et al.  Nanowire-based sublithographic programmable logic arrays , 2004, FPGA '04.

[2]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[3]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[4]  Michael Butts,et al.  Molecular electronics: devices, systems and tools for gigagate, gigabit chips , 2002, IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002..

[5]  Kok Wai Wong,et al.  Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation , 2002, Digest. International Electron Devices Meeting,.

[6]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[7]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[8]  André DeHon,et al.  Design of programmable interconnect for sublithographic programmable logic arrays , 2005, FPGA '05.

[9]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[10]  Eric M. Vogel,et al.  High inversion current in silicon nanowire field effect transistors , 2004 .

[11]  J. Heath,et al.  Bridging Dimensions: Demultiplexing Ultrahigh-Density Nanowire Circuits , 2005, Science.

[12]  Jeffrey Bokor,et al.  Fabrication of planar silicon nanowires on silicon-on-insulator using stress limited oxidation , 1997 .

[13]  H.-S.P. Wong,et al.  Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[14]  Dimitris E. Ioannou,et al.  High Performance Silicon Nanowire Field Effect Transistor , 2008 .

[15]  Seth Copen Goldstein,et al.  NanoFabrics: spatial computing using molecular electronics , 2001, ISCA 2001.

[16]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[17]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[18]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[19]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[20]  B. Kurdi,et al.  The micro to nano addressing block (MNAB) , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[21]  T. Hogg,et al.  Assembling nanoscale circuits with randomized connections , 2006, IEEE Transactions on Nanotechnology.

[22]  John E. Savage,et al.  Radial addressing of nanowires , 2006, JETC.

[23]  Gianfranco Cerofolini,et al.  Realistic limits to computation. II. The technological side , 2006 .

[24]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[25]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[27]  T. Skotnicki,et al.  50 nm-Gate All Around (GAA)-Silicon On Nothing (SON)-devices: a simple way to co-integration of GAA transistors within bulk MOSFET process , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[28]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[29]  A. DeHon,et al.  Nonphotolithographic nanoscale memory density prospects , 2005, IEEE Transactions on Nanotechnology.

[30]  H M Wilbur Ecological Experiments. Purpose, Design, and Execution. Nelson G. Hairston, Sr. Cambridge University Press, New York, 1989. xiv, 370 pp., illus. $52.50; paper, $24.95. Cambridge Studies in Ecology. , 1990, Science.

[31]  R. Stanley Williams,et al.  Direct Observation of Nanoscale Switching Centers in Metal/Molecule/Metal Structures , 2004 .

[32]  V. Pott,et al.  Cointegration of Gate-All-Around MOSFETs and Local Silicon-on-Insulator Optical Waveguides on Bulk Silicon , 2007, IEEE Transactions on Nanotechnology.