Multiband Pyramidal Antenna Loaded With a Cutoff Open-Ended Waveguide

An original and flexible pyramidal antenna for satellite or terrestrial application services is presented. The ground plane of the antenna is perforated and loaded with a cutoff open-ended waveguide: this original configuration leads to a good tradeoff between rear radiation and impedance matching. Trap-loads are used to achieve multiband operation while frequency agility may be simply obtained by loading the radiating element by radio-frequency switches. The antenna radiates linearly or circularly polarized electromagnetic fields with quasi-hemispheric radiation patterns at multiple operating frequencies. Several prototypes have been simulated, manufactured, and finally measured. A specific application is given in this paper for a triband GPS/Galileo/MicroSat Telemetry antenna to combine positioning and telemetry applications. The experimental results confirm the good performances observed with the electromagnetic simulations.

[1]  Yu-De Lin,et al.  Analysis and design of broadside-coupled striplines-fed bow-tie antennas , 1998 .

[2]  H. Aubert,et al.  Trap-loaded pyramidal Tri-band antenna for satellite applications , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[3]  Ross D. Murch,et al.  Compact dual-frequency PIFA designs using LC resonators , 2001 .

[4]  K.C. Hwang,et al.  A Modified Sierpinski Fractal Antenna for Multiband Application , 2007, IEEE Antennas and Wireless Propagation Letters.

[5]  R. Collin Field theory of guided waves , 1960 .

[6]  H. Aubert,et al.  Pyramidal multi-band antennas for GPS/Galileo/MicroSat application , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[7]  Jordi Romeu,et al.  Generalized Sierpinski fractal multiband antenna , 2001 .

[8]  J. Volakis,et al.  Polymer–Ceramic Composites for Microwave Applications: Fabrication and Performance Assessment , 2006, IEEE Transactions on Microwave Theory and Techniques.

[9]  Yahya Rahmat-Samii,et al.  Fractal Yagi antennas: Design, simulation, and fabrication , 2004 .

[10]  S.R. Best,et al.  On the radiation pattern characteristics of the Sierpinski and modified Parany gasket antennas , 2002, IEEE Antennas and Wireless Propagation Letters.

[11]  D. Lamensdorf,et al.  Dual-band quadrifilar helix antenna , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[12]  J.S. Petko,et al.  Miniature reconfigurable three-dimensional fractal tree antennas , 2004, IEEE Transactions on Antennas and Propagation.

[13]  Jordi Romeu,et al.  Perturbation of the Sierpinski antenna to allocate operating bands , 1996 .

[14]  Tang,et al.  Hexagonal fractal multiband antenna , 2004, IEEE Antennas and Wireless Propagation Letters.

[15]  Jordi Romeu Robert,et al.  On the behavior of the Sierpinski multiband fractal antenna , 1998 .

[16]  Jwo-Shiun Sun,et al.  New multiband printed meander antenna for wireless applications , 2005 .

[17]  S.R. Best,et al.  On the significance of self-similar fractal geometry in determining the multiband behavior of the Sierpinski gasket antenna , 2002, IEEE Antennas and Wireless Propagation Letters.

[18]  Jordi Romeu,et al.  On the behavior of the Sierpinski multiband fractal antenna , 1998 .

[19]  Pertti Vainikainen,et al.  Dual frequency wire antennas , 1996 .