Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors

[1]  Leonidas Guibas,et al.  Side-Tuning: Network Adaptation via Additive Side Networks , 2019, ArXiv.

[2]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[3]  Ludovic Denoyer,et al.  Efficient Continual Learning with Modular Networks and Task-Driven Priors , 2020, ArXiv.

[4]  Andreas S. Tolias,et al.  Generative replay with feedback connections as a general strategy for continual learning , 2018, ArXiv.

[5]  David Rolnick,et al.  Experience Replay for Continual Learning , 2018, NeurIPS.

[6]  Surya Ganguli,et al.  Continual Learning Through Synaptic Intelligence , 2017, ICML.

[7]  Derek Hoiem,et al.  Learning without Forgetting , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[9]  Junsoo Ha,et al.  A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning , 2020, ICLR.

[10]  Marcus Rohrbach,et al.  Memory Aware Synapses: Learning what (not) to forget , 2017, ECCV.

[11]  Yarin Gal,et al.  Understanding Measures of Uncertainty for Adversarial Example Detection , 2018, UAI.

[12]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[13]  Marc'Aurelio Ranzato,et al.  Gradient Episodic Memory for Continual Learning , 2017, NIPS.

[14]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[15]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Yi-Ming Chan,et al.  Compacting, Picking and Growing for Unforgetting Continual Learning , 2019, NeurIPS.

[17]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[18]  Yarin Gal,et al.  Towards Robust Evaluations of Continual Learning , 2018, ArXiv.

[19]  István Csabai,et al.  Detecting and classifying lesions in mammograms with Deep Learning , 2017, Scientific Reports.

[20]  Yoshua Bengio,et al.  An Empirical Investigation of Catastrophic Forgeting in Gradient-Based Neural Networks , 2013, ICLR.

[21]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[22]  Stefan Wermter,et al.  Continual Lifelong Learning with Neural Networks: A Review , 2019, Neural Networks.

[23]  Zhanxing Zhu,et al.  Reinforced Continual Learning , 2018, NeurIPS.

[24]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[25]  Stefan Zohren,et al.  Hierarchical Indian buffet neural networks for Bayesian continual learning , 2019, UAI.

[26]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[27]  Yee Whye Teh,et al.  Progress & Compress: A scalable framework for continual learning , 2018, ICML.

[28]  Andreas S. Tolias,et al.  Three scenarios for continual learning , 2019, ArXiv.

[29]  Abhishek Kumar,et al.  Nonparametric Bayesian Structure Adaptation for Continual Learning , 2019, ArXiv.

[30]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[31]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[32]  Yen-Cheng Liu,et al.  Re-evaluating Continual Learning Scenarios: A Categorization and Case for Strong Baselines , 2018, ArXiv.

[33]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[34]  Marco Cote STICK-BREAKING VARIATIONAL AUTOENCODERS , 2017 .

[35]  David Barber,et al.  Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting , 2018, NeurIPS.

[36]  Lawrence Carin,et al.  Automatic threat recognition of prohibited items at aviation checkpoint with x-ray imaging: a deep learning approach , 2018, Defense + Security.

[37]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[38]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[39]  Guoyin Wang,et al.  Generative Adversarial Network Training is a Continual Learning Problem , 2018, ArXiv.

[40]  J. V. Michalowicz,et al.  Handbook of Differential Entropy , 2013 .

[41]  Richard E. Turner,et al.  Variational Continual Learning , 2017, ICLR.

[42]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[43]  Tinne Tuytelaars,et al.  Task-Free Continual Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Yee Whye Teh,et al.  Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.

[45]  Yarin Gal,et al.  Uncertainty in Deep Learning , 2016 .

[46]  Yarin Gal,et al.  A Unifying Bayesian View of Continual Learning , 2019, ArXiv.

[47]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[48]  Jiwon Kim,et al.  Continual Learning with Deep Generative Replay , 2017, NIPS.

[49]  P. Kumaraswamy A generalized probability density function for double-bounded random processes , 1980 .

[50]  R Ratcliff,et al.  Connectionist models of recognition memory: constraints imposed by learning and forgetting functions. , 1990, Psychological review.

[51]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[52]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.