The foundations of set theoretic estimation

Many scattered estimation problems in systems science and signal processing have been approached in set theoretic terms over the past three decades. A single formal framework is presented to synthesize these various approaches, and the fundamental philosophy, goals, and analytical techniques of set theoretic estimation are discussed.<<ETX>>

[1]  Y. Censor,et al.  Strong underrelaxation in Kaczmarz's method for inconsistent systems , 1983 .

[2]  Jan P. Allebach,et al.  Iterative reconstruction of bandlimited images from nonuniformly spaced samples , 1987 .

[3]  A. Murat Tekalp,et al.  Comparative study of some statistical and set-theoretic methods for image restoration , 1991, CVGIP Graph. Model. Image Process..

[4]  Y. Censor Iterative Methods for the Convex Feasibility Problem , 1984 .

[5]  R. Gerchberg Super-resolution through Error Energy Reduction , 1974 .

[6]  H. Trussell,et al.  Constructing membership functions using statistical data , 1986 .

[7]  Patrick L. Combettes,et al.  New methods for the synthesis of set theoretic estimates (digital signal processing) , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[8]  Gabor T. Herman,et al.  Relaxation methods for image reconstruction , 1978, CACM.

[9]  E. Veklerov,et al.  Stopping Rule for the MLE Algorithm Based on Statistical Hypothesis Testing , 1987, IEEE Transactions on Medical Imaging.

[10]  Patrick L. Combettes,et al.  The use of noise properties in set theoretic estimation , 1991, IEEE Trans. Signal Process..

[11]  G. T. Poulton Antenna power pattern synthesis using method of successive projections , 1986 .

[12]  Peter Kosmol,et al.  The product of affine orthogonal projections , 1991 .

[13]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[15]  Stéphane Mallat,et al.  Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.

[16]  Rashid Ansari,et al.  Convolution-based framework for signal recovery and applications , 1988 .

[17]  F. Schweppe,et al.  Control of linear dynamic systems with set constrained disturbances , 1971 .

[18]  W D Montgomery Optical applications of von Neumann's alternating-projection theorem. , 1982, Optics letters.

[19]  D. Braess Nonlinear Approximation Theory , 1986 .

[20]  J Shamir,et al.  Application of the projection-onto-constraint-sets algorithm for optical pattern recognition. , 1991, Optics letters.

[21]  Yair Censor,et al.  Cyclic subgradient projections , 1982, Math. Program..

[22]  Poorvi L. Vora,et al.  Bounds on restoration quality using a priori information , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[23]  Simeon Reich,et al.  A limit theorem for projections , 1983 .

[24]  Gordon G. Johnson A nonconvex set which has the unique nearest point property , 1987 .

[25]  Norbert Wiener,et al.  On the factorization of matrices , 1955 .

[26]  Ronald E. Burge,et al.  Two optimisation approaches to COHOE design , 1989 .

[27]  E. Fogel System identification via membership set constraints with energy constrained noise , 1979 .

[28]  J.R. Deller A 'systolic array' formulation of the optimal bounding ellipsoid algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..

[29]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[30]  Robert J. Marks Class of continuous level associative memory neural nets , 1987 .

[31]  Bahaa E. A. Saleh,et al.  Image construction through diffraction-limited high-contrast imaging systems: an iterative approach , 1985 .

[32]  Thomas J. Rothenberg,et al.  Efficient estimation with a priori information , 1974 .

[33]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[34]  Patrick L. Combettes,et al.  Methods for digital restoration of signals degraded by a stochastic impulse response , 1989, IEEE Trans. Acoust. Speech Signal Process..

[35]  Ahmet Enis Cetin,et al.  Iterative procedure for designing two-dimensional FIR filters , 1987 .

[36]  D. Cahana,et al.  Restoration of arbitrary finite-energy optical objects from limited spatial and spectral information , 1981 .

[37]  G. Crombez Image Recovery by Convex Combinations of Projections , 1991 .

[38]  William Menke,et al.  Applications of the POCS inversion method to interpolating topography and other geophysical fields , 1991 .

[39]  H. Trussell,et al.  The Landweber iteration and projection onto convex sets , 1985, IEEE Trans. Acoust. Speech Signal Process..

[40]  J. R. Deller,et al.  Linear prediction analysis of speech based on set-membership theory , 1989 .

[41]  Jean-Louis Goffin,et al.  The Relaxation Method for Solving Systems of Linear Inequalities , 1980, Math. Oper. Res..

[42]  Ronald K. Pearson,et al.  Block-sequential algorithms for set-theoretic estimation , 1988 .

[43]  H. Witsenhausen Sets of possible states of linear systems given perturbed observations , 1968 .

[44]  R. Kosut Adaptive control via parameter set estimation , 1988 .

[45]  K. G. Murty,et al.  New iterative methods for linear inequalities , 1992 .

[46]  James A. Cadzow,et al.  Algebraic approach to two-dimensional recursive digital filter synthesis , 1989, IEEE Trans. Acoust. Speech Signal Process..

[47]  Karel J. Keesman,et al.  Identification and prediction propagation of uncertainty in models with bounded noise , 1989 .

[48]  J Llacer,et al.  Feasible images and practical stopping rules for iterative algorithms in emission tomography. , 1989, IEEE transactions on medical imaging.

[49]  Y. Censor,et al.  An interior points algorithm for the convex feasibility problem , 1983 .

[50]  Langford B. White,et al.  Signal synthesis from Cohen's class of bilinear time-frequency signal representations using convex projections , 1991, IEEE International Conference on Acoustics, Speech, and Signal Processing.

[51]  S. Pei,et al.  Design of a class of time-constrained FIR digital filters by successive projections , 1989 .

[52]  Alfredo N. Iusem,et al.  Convergence results for an accelerated nonlinear cimmino algorithm , 1986 .

[53]  F. Robert Contraction en norme vectorielle: Convergence d'iterations chaotiques pour des equations non linéaires de point fixe à plusieurs variables , 1976 .

[54]  Eric Walter,et al.  Characterization of non-connected parameter uncertainty regions , 1990 .

[55]  Edward L. Titlebaum,et al.  Estimation of the parameters of a multipath channel using set-theoretic deconvolution , 1992, IEEE Trans. Commun..

[56]  W. L. Miranker,et al.  The recovery of distorted band-limited signals , 1961 .

[57]  Osami Sasaki,et al.  Image restoration in singular vector space by the method of convex projections. , 1987, Applied optics.

[58]  R. Marks,et al.  Signal synthesis in the presence of an inconsistent set of constraints , 1985 .

[59]  Y. Censor,et al.  A New Approach to the Emission Computerized Tomography Problem: Simultaneous Calculation of Attenuation and Activity Coefficients , 1979, IEEE Transactions on Nuclear Science.

[60]  Ovidio Mario Bucci,et al.  Reconfigurable arrays by phase-only control , 1991 .

[61]  Howard L. Weinert,et al.  Error bounds for the method of alternating projections , 1988, Math. Control. Signals Syst..

[62]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[63]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[64]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[65]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[66]  E. Walter,et al.  Exact recursive polyhedral description of the feasible parameter set for bounded-error models , 1989 .

[67]  B E Saleh,et al.  Image construction: optimum amplitude and phase masks in photolithography. , 1985, Applied optics.

[68]  M. R. Civanlar,et al.  Comments on "Design of a class of time-constrained FIR digital filters by successive projections , 1990 .

[69]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[70]  Patrice Y. Simard,et al.  A Projection Operator for the Restoration of Divergence-Free Vector Fields , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  H Stark,et al.  Projection method formulations of Hopfield-type associative memory neural networks. , 1990, Applied optics.

[72]  G. T. Poulton,et al.  Efficient design of shaped reflectors using successive projections , 1991 .

[73]  L. Zadeh What is optimal? (Edtl.) , 1958 .

[74]  N. Ottavy Strong convergence of projection-like methods in Hilbert spaces , 1988 .

[75]  A P Dhawan,et al.  Algorithms for limited-view computed tomography: an annotated bibliography and a challenge. , 1985, Applied optics.

[76]  H. Elmikati,et al.  Extension of projection method to nonuniformly linear antenna arrays , 1984 .

[77]  K. Tanabe Projection method for solving a singular system of linear equations and its applications , 1971 .

[78]  Y. Censor,et al.  Block-iterative projection methods for parallel computation of solutions to convex feasibility problems , 1989 .

[79]  José María Carazo,et al.  Information recovery in missing angular data cases: an approach by the convex projections method in three dimensions , 1987 .

[80]  A. Lent,et al.  An iterative method for the extrapolation of band-limited functions , 1981 .

[81]  Jan Mandel Convergence of the cyclical relaxation method for linear inequalities , 1984, Math. Program..

[82]  Patrick L. Combettes,et al.  NEW METHODS FOR THE SYNTHESIS OF SET THEORETIC ESTIMATES , 1990 .

[83]  Henry Stark,et al.  Design of phase gratings by generalized projections , 1991 .

[84]  F. Schweppe,et al.  Continuous-time state estimation under disturbances bounded by convex sets , 1972 .

[85]  Harold A. Sabbagh,et al.  An eddy-current model and algorithm for three-dimensional nondestructive evaluation of advanced composites , 1988 .

[86]  A. Oppenheim,et al.  Reconstruction of two-dimensional signals from level crossings , 1990 .

[87]  Darryl Morrell,et al.  Convex Bayes decision theory , 1991, IEEE Trans. Syst. Man Cybern..

[88]  H. Trussell,et al.  Convergence criteria for iterative restoration methods , 1983 .

[89]  A. Abo-Taleb,et al.  Design of FIR two- dimensional digital filters by successive projections , 1984 .

[90]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[91]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[92]  Henry Stark,et al.  Iterative and one-step reconstruction from nonuniform samples by convex projections , 1990 .

[93]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[94]  Dante C. Youla,et al.  Generalized Image Restoration by the Method of Alternating Orthogonal Projections , 1978 .

[95]  Anne M. Landraud Image restoration and enhancement of characters, using convex projection methods , 1991, CVGIP Graph. Model. Image Process..

[96]  Hiroyuki Kudo,et al.  Sinogram recovery with the method of convex projections for limited-data reconstruction in computed tomography , 1992 .

[97]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[98]  Giorgio Franceschetti,et al.  Intersection approach to array pattern synthesis , 1990 .

[99]  H. Trussell,et al.  Errors in Reprojection Methods in Computenzed Tomography , 1987, IEEE Transactions on Medical Imaging.

[100]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[101]  G. Herman Mathematical optimization versus practical performance: A case study based on the maximum entropy criterion in image reconstruction , 1982 .

[102]  Philip Wolfe,et al.  Finding the nearest point in A polytope , 1976, Math. Program..

[103]  M. Ibrahim Sezan,et al.  Prototype image constraints for set-theoretic image restoration , 1991, IEEE Trans. Signal Process..

[104]  A. Kandel Fuzzy Mathematical Techniques With Applications , 1986 .

[105]  H. Trussell,et al.  The feasible solution in signal restoration , 1984 .

[106]  C T Chen,et al.  Superresolved tomography by convex projections and detector motion. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[107]  Michel Bouvet,et al.  Constrained Wiener filtering , 1987, IEEE Trans. Inf. Theory.

[108]  M. R. Civanlar,et al.  Optimal pulse shape design using projections onto convex sets , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[109]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[110]  M. Arioli,et al.  A big-M type method for the computation of projections onto polyhedrons , 1985 .

[111]  A. Murat Tekalp,et al.  Adaptive image restoration with artifact suppression using the theory of convex projections , 1990, IEEE Trans. Acoust. Speech Signal Process..

[112]  R. Tempo Robust estimation and filtering in the presence of bounded noise , 1987, 26th IEEE Conference on Decision and Control.

[113]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[114]  M. Sezan,et al.  Image Restoration by the Method of Convex Projections: Part 2-Applications and Numerical Results , 1982, IEEE Transactions on Medical Imaging.

[115]  Yih-Fang Huang,et al.  ARMA parameter estimation using a novel recursive estimation algorithm with selective updating , 1990, IEEE Trans. Acoust. Speech Signal Process..

[116]  B. Efron Why Isn't Everyone a Bayesian? , 1986 .

[117]  Fred C. Schweppe,et al.  The theory of amorphous cloud trajectory prediction , 1968, IEEE Trans. Inf. Theory.

[118]  J. Zowe,et al.  Relaxed outer projections, weighted averages and convex feasibility , 1990 .

[119]  A. Enis Çetin,et al.  An iterative algorithm for signal reconstruction from bispectrum , 1991, IEEE Trans. Signal Process..

[120]  Aggelos K. Katsaggelos,et al.  New termination rule for linear iterative image restoration algorithms , 1990 .

[121]  D. Youla,et al.  Extensions of a result on the synthesis of signals in the presence of inconsistent constraints , 1986 .

[122]  Henry Stark,et al.  Projection-based image restoration , 1992 .

[123]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[124]  M. Reha Civanlar,et al.  Digital signal restoration using fuzzy sets , 1986, IEEE Trans. Acoust. Speech Signal Process..

[125]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[126]  Messaoud Benidir,et al.  Nonconvexity of the stability domain of digital filters , 1990, IEEE Trans. Acoust. Speech Signal Process..

[127]  Patrick L. Combettes,et al.  A general framework for the incorporation of uncertainty in set theoretic estimation , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[128]  H Stark,et al.  High-resolution image recovery from image-plane arrays, using convex projections. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[129]  N. Hurt Signal enhancement and the method of successive projections , 1991 .

[130]  Avideh Zakhor,et al.  Reconstruction of oversampled band-limited signals from Sigma Delta encoded binary sequences , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[131]  S Ebstein,et al.  Stellar speckle interferometry energy spectrum recovery by convex projections. , 1987, Applied optics.

[132]  Darryl Morrell,et al.  Set-values filtering and smoothing , 1991, IEEE Trans. Syst. Man Cybern..

[133]  PETER SANTAGO,et al.  Using Convex Set Techniques for Combined Pixel and Frequency Domain Coding of Time-Varying Images , 1987, IEEE J. Sel. Areas Commun..

[134]  R. Mathar,et al.  A cyclic projection algorithm via duality , 1989 .

[135]  Gabor T. Herman,et al.  A relaxation method for reconstructing objects from noisy X-rays , 1975, Math. Program..

[136]  Ronald E. Bruck Random products of contractions in metric and Banach Spaces , 1982 .

[137]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[138]  Shih-Ping Han,et al.  A successive projection method , 1988, Math. Program..

[139]  J. P. Norton,et al.  Identification and application of bounded-parameter models , 1985, Autom..

[140]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[141]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[142]  Irwin E. Schochetman,et al.  Convergence of best approximations from unbounded sets , 1992 .

[143]  H. Trussell,et al.  Method of successive projections for finding a common point of sets in metric spaces , 1990 .

[144]  J. R. Cruz,et al.  Enhanced autoregressive moving average spectral estimation applied to the measurement of Doppler spectral width , 1991, IEEE Trans. Geosci. Remote. Sens..

[145]  N. C. Gallagher,et al.  Method for Computing Kinoforms that Reduces Image Reconstruction Error. , 1973, Applied optics.

[146]  A. Papoulis A new algorithm in spectral analysis and band-limited extrapolation. , 1975 .

[147]  Yih-Fang Huang,et al.  Asymptotically convergent modified recursive least-squares with data-dependent updating and forgetting factor , 1985, 1985 24th IEEE Conference on Decision and Control.