Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor–acceptor nanohybrid

Novel covalently porphyrin-functionalized single-walled carbon nanotubes (SWNTs) have been synthesized by the reaction of SWNTs with in situ generated porphyrin diazonium compounds. The resulting nanohybrid was characterized by spectroscopic (UV-Vis-NIR, FTIR and Raman) and microscopic (TEM and AFM) methods. The Raman and absorption spectroscopy data showed that the electronic properties of the modified tubes were mostly retained, without damaging their one-dimensional electronic properties. The fluorescence from the porphyrin moiety was almost completely quenched by SWNTs, indicating that the unique direct linkage mode facilitated the effective energy and electron transfer between the excited porphyrin moiety and the extended π-system of SWNTs. This novel nanohybrid material also exhibited excellent optical limiting properties.

[1]  Q. Guo,et al.  Photoinduced electron transfer between mono-6-p-nitrobenzoyl-β-cyclodextrin and Adamantanamine-Cn-porphyrins , 2003 .

[2]  Hong Zhang,et al.  Photoinduced intramolecular electron transfer in an anthraquinone-fluorescein-carbazole model , 1997 .

[3]  Michael Hanack,et al.  Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics , 2003 .

[4]  Zhi‐Xin Guo,et al.  Large-Scale Preparation of Solubilized Carbon Nanotubes , 2003 .

[5]  François Hache,et al.  Carbon nanotubes for optical limiting , 2002 .

[6]  Durairaj Baskaran,et al.  Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. , 2005, Journal of the American Chemical Society.

[7]  Qiang Wu,et al.  Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds , 2005 .

[8]  F. R. Longo,et al.  Luminescence studies on several tetraarylporphins and their zinc derivatives , 1975 .

[9]  M. Kochanny,et al.  Regiospecific aryl nitration of meso-substituted tetraarylporphyrins: a simple route to bifunctional porphyrins , 1989 .

[10]  I. Yamazaki,et al.  Bioinspired molecular design of light-harvesting multiporphyrin arrays. , 2004, Angewandte Chemie.

[11]  M. Prato,et al.  Carbon nanotubes in electron donor-acceptor nanocomposites. , 2005, Accounts of chemical research.

[12]  François Hache,et al.  Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon-nanotube suspensions , 2002 .

[13]  Zhi‐Xin Guo,et al.  PVK-Modified Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer , 2003 .

[14]  P. Seybold,et al.  Porphyrins. XIII: Fluorescence spectra and quantum yields , 1969 .

[15]  N Izard,et al.  Influence of structure on the optical limiting properties of nanotubes. , 2005, Optics letters.

[16]  J. Tour,et al.  Dispersion of Functionalized Carbon Nanotubes in Polystyrene , 2002 .

[17]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[18]  J. J. Hopfield,et al.  Effect of exothermicity on electron transfer rates in photosynthetic molecular models , 1987, Nature.

[19]  Werner J. Blau,et al.  Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle Dispersions , 2003 .

[20]  R. Haddon,et al.  Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. , 2005, Journal of the American Chemical Society.

[21]  S. Fukuzumi,et al.  Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J- and H-aggregates to nanorods. , 2005, Journal of the American Chemical Society.

[22]  John S Werner,et al.  Senescent changes in parafoveal color appearance: saturation as a function of stimulus area. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  P. Kamat,et al.  Single‐Walled Carbon Nanotube–CdS Nanocomposites as Light‐Harvesting Assemblies: Photoinduced Charge‐Transfer Interactions , 2005 .

[24]  Hiroto Murakami,et al.  Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites , 2003 .

[25]  C. Collier,et al.  Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. , 2005, The journal of physical chemistry. B.

[26]  W. E. Billups,et al.  Covalent sidewall functionalization of single wall carbon nanotubes. , 2003, Journal of the American Chemical Society.

[27]  M. Itkis,et al.  Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. , 2001, Journal of the American Chemical Society.

[28]  M. Prato,et al.  Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. , 2004, Angewandte Chemie.

[29]  M. Prato,et al.  Donor-acceptor nanoensembles of soluble carbon nanotubes. , 2004, Chemical communications.

[30]  M. Prato,et al.  Functional single-wall carbon nanotube nanohybrids--associating SWNTs with water-soluble enzyme model systems. , 2005, Journal of the American Chemical Society.

[31]  Lei Zhang,et al.  Sidewall Functionalization of Single-Walled Carbon Nanotubes with Hydroxyl Group-Terminated Moieties , 2004 .

[32]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[33]  M. Prato,et al.  Novel Photoactive Single‐Walled Carbon Nanotube–Porphyrin Polymer Wraps: Efficient and Long‐Lived Intracomplex Charge Separation , 2005 .

[34]  D. Resasco,et al.  Grafting of Poly(4-vinylpyridine) to Single-Walled Carbon Nanotubes and Assembly of Multilayer Films , 2004 .

[35]  T. Balaban,et al.  Controlling chirality and optical properties of artificial antenna systems with self-assembling porphyrins. , 2003, Angewandte Chemie.

[36]  Maurizio Prato,et al.  Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. , 2006, Chemistry.

[37]  M. Prato,et al.  Electronically interacting single wall carbon nanotube–porphyrin nanohybrids , 2006 .

[38]  R. Seeber,et al.  Water-soluble full-length single-wall carbon nanotube polyelectrolytes: preparation and characterization. , 2005, The journal of physical chemistry. B.

[39]  Riichiro Saito,et al.  Raman spectroscopy on isolated single wall carbon nanotubes , 2002 .

[40]  K. Rurack,et al.  Multiple switching and photogated electrochemiluminescence expressed by a dihydroazulene/boron dipyrromethene dyad. , 2005, Angewandte Chemie.

[41]  A. Adronov,et al.  Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polymers by Radical Coupling , 2005 .

[42]  D. Guldi Biomimetic assemblies of carbon nanostructures for photochemical energy conversion. , 2005, The journal of physical chemistry. B.

[43]  J. Tour,et al.  Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications , 2004 .

[44]  J. Tour,et al.  Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. , 2004, Journal of the American Chemical Society.

[45]  James M Tour,et al.  Separation of single-walled carbon nanotubes on silica gel. Materials morphology and Raman excitation wavelength affect data interpretation. , 2005, Journal of the American Chemical Society.

[46]  Stanislaus S. Wong,et al.  Purification strategies and purity visualization techniques for single-walled carbon nanotubes , 2006 .

[47]  P. He,et al.  Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[48]  Hui Hu,et al.  Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy , 2003 .

[49]  J. Tour,et al.  Solvent-free functionalization of carbon nanotubes. , 2003, Journal of the American Chemical Society.

[50]  D. E. Hill,et al.  Characterization of Functionalized Single-Walled Carbon Nanotubes at Individual Nanotube-Thin Bundle Level , 2003 .

[51]  James M. Tour,et al.  Dissolution of small diameter single-wall carbon nanotubes in organic solvents? , 2001 .

[52]  Weihong Zhu,et al.  Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states , 2003 .

[53]  H. Ågren,et al.  Optical limiting properties of Zinc- and Platinum-based organometallic compounds , 2004 .

[54]  Bo Chen,et al.  Fabrication of carbon nanotube-molecule-silicon junctions. , 2005, Journal of the American Chemical Society.

[55]  M. Prato,et al.  Soluble carbon nanotube ensembles for light-induced electron transfer interactions , 2005 .

[56]  Z. Gu,et al.  Purification of single-walled carbon nanotubes , 1999 .

[57]  Y. Kobuke,et al.  Porphyrin−Carbon Nanotube Composites Formed by Noncovalent Polymer Wrapping , 2005 .

[58]  P. Kruse,et al.  Long-Range Periodicity in Carbon Nanotube Sidewall Functionalization , 2004 .

[59]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[60]  Ya‐Ping Sun,et al.  Single‐Walled Carbon Nanotubes Tethered with Porphyrins: Synthesis and Photophysical Properties , 2004 .

[61]  J. Tour,et al.  Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. , 2005, Journal of the American Chemical Society.

[62]  Gilbert C Walker,et al.  Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. , 2002, Journal of the American Chemical Society.

[63]  Christian Laurence,et al.  The Empirical Treatment of Solvent-Solute Interactions: 15 Years of .pi.* , 1994 .

[64]  Robert C. Haddon,et al.  Ultrasonic Dispersions of Single-Walled Carbon Nanotubes , 2003 .

[65]  L. Ley,et al.  Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. , 2003, Journal of the American Chemical Society.

[66]  M. P. Kothiyal,et al.  Nonlinear optical properties of a porphyrin derivative incorporated in Nafion polymer , 2005 .

[67]  Lei Zhang,et al.  Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. , 2005, Nano letters.

[68]  Arnout Ceulemans,et al.  Electron Deficiency of the Fullerenes , 1995 .

[69]  Maurizio Prato,et al.  Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. , 2005, Angewandte Chemie.

[70]  J. Tour,et al.  Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds , 2001 .

[71]  D. Carroll,et al.  Enhanced Nonlinear Transmittance by Complementary Nonlinear Mechanisms: A Reverse‐Saturable Absorbing Dye Blended with Nonlinear‐Scattering Carbon Nanotubes , 2005 .

[72]  B. Landi,et al.  Effects of Alkyl Amide Solvents on the Dispersion of Single-Wall Carbon Nanotubes , 2004 .

[73]  G. Hadziioannou,et al.  Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline derivatives substituted with an oligophenylenevinylene moietyElectronic supplementary information (ESI) available: synthetic procedures and full characterization of all new compounds. See http://www.rsc.org/suppdata/jm/b2/b200432 , 2002 .

[74]  J. Tour,et al.  Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions , 2003 .

[75]  Ya‐Ping Sun,et al.  Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.