Cr/sup 2+/-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers

Transition-metal-doped zinc chalcogenide crystals have recently been investigated as potential mid-infrared lasers. Tetrahedrally coordinated Cr/sup 2+/ ions are especially attractive as lasants on account of high luminescence quantum yields for emission in the 2000-3000-nm range. Radiative lifetimes and emission cross sections of the upper /sup 5/E state are respectively /spl sim/10 /spl mu/s and /spl sim/10/sup -18/ cm/sup 2/. The associated absorption band peaked at /spl sim/1800 mm enables laser-diode pumping of the Cr/sup 2+/ systems. Laser demonstrations with ZnS:Cr and ZnSe:Cr (using a MgF/sub 2/:Co/sup 2+/ laser pump source) gave slope efficiencies up to 30%. Excited-state-absorption losses appear small, and passive losses dominate at present. Tuning experiments with a diffraction grating produce a tuning range covering at least 2150-2800 nm. Laser crystals can be produced by Bridgman growth, seeded physical vapor transport, or diffusion doping. Zinc chalcogenide thermomechanical properties of interest for medium-to-high-power operation compare favorably with those of other host materials, except for the larger refractive-index derivative dn/dT.

[1]  William F. Krupke,et al.  Laser, optical, and thermomechanical properties of Yb-doped fluorapatite , 1994 .

[2]  A J Alcock,et al.  High-efficiency diode-pumped Nd:YVO(4) slab laser. , 1993, Optics letters.

[3]  D. Findlay,et al.  The measurement of internal losses in 4-level lasers , 1966 .

[4]  Ralph H. Page,et al.  Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .

[5]  Lloyd L. Chase,et al.  Quantum electronic properties of the Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ laser , 1988 .

[6]  K. Petermann The role of excited-state absorption in tunable solid-state lasers , 1990 .

[7]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[8]  John C. Walling,et al.  Tunable alexandrite lasers , 1980 .

[9]  P. Hagenmuller,et al.  Luminescent properties of Nd3+ in the NaxNdxM(1−2x)Ga2S4 thiogallates (M = Ca,Sr,Ba; x ≤ 0.5): A family of materials characterized by weak self-quenching and efficient band excitation , 1984 .

[10]  John A. Caird,et al.  Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet , 1986 .

[11]  G. Garlick,et al.  The infrared emission of nickel ion impurity centres in various solids , 1967 .

[12]  L. Esterowitz,et al.  Tm(3+):YLF laser continuously tunable between 2.20 and 2.46 microm. , 1994, Optics letters.

[13]  J. Nella,et al.  Characteristics of room-temperature 2.3-µm laser emission from tm3+in YAG and YAlO3 , 1975, IEEE Journal of Quantum Electronics.

[14]  Lloyd L. Chase,et al.  Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/ , 1992 .

[15]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .

[16]  H. Schulz,et al.  Optical transitions in ZnS type crystals containing cobalt , 1965 .

[17]  H.-J. Schulz,et al.  Luminescence of Cr2+ Centres and Related Optical Interactions Involving Crystal Field Levels of Chromium Ions in Zinc Sulfide , 1974 .

[18]  H. Jenssen,et al.  Tunable-laser performance in BeAl(2)O(4):Cr(3+). , 1979, Optics letters.

[19]  Raymond J. Beach,et al.  Modular microchannel cooled heatsinks for high average power laser diode arrays , 1992 .

[20]  K. Petermann,et al.  Spectroscopic properties of Cr4+-doped LiAlO2 , 1995 .

[21]  A. Zunger,et al.  Many-electron multiplet effects in the spectra of 3 d impurities in heteropolar semiconductors , 1984 .

[22]  B. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method , 1981 .

[23]  H. Schulz,et al.  Jahn-Teller interaction at Cr2+(d4) centres in tetrahedrally coordinated II–VI lattices studied by optical spectroscopy , 1993 .

[24]  G. Huber,et al.  High resolution spectroscopy of Cr4+ doped Y3Al5O12 , 1994 .

[25]  G. A. Slack,et al.  Infrared Absorption in Some II-VI Compounds Doped with Cr , 1970 .

[26]  R. Alfano,et al.  Room-temperature near-infrared tunable laser operation of Cr(4+):Ca(2)GeO(4). , 1996, Optics letters.

[27]  R J Beach Theory and optimization of lens ducts. , 1996, Applied optics.

[28]  G. Peterson 5. Dye Lasers , 1979 .

[29]  Brian R. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I , 1981 .

[30]  C. Grund,et al.  Laser performance of diode-pumped thulium-doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 crystals. , 1994, Optics letters.

[31]  R. Moncorgé,et al.  Excited-state absorption of Co2+ in MgF2 and KZnF3 , 1990 .

[32]  H. Weakliem Optical Spectra of Ni2+, Co2+, and Cu2+ in Tetrahedral Sites in Crystals , 1962 .

[33]  M. Weber,et al.  III Relaxation Phenomena in Rare-Earth Luminescence , 1977 .

[34]  M Kaminska,et al.  The chromium impurity photogeneration transitions in ZnS, ZnSe and ZnTe , 1980 .

[35]  H. Moos,et al.  Multiphonon orbit-lattice relaxation in LaBr sub 3, LaCl sub 3, and LaF sub 3. , 1967 .

[36]  B. Woods,et al.  Thermomechanical and thermo-optical properties of the LiCaAlF 6 :Cr 3+ laser material , 1991 .

[37]  W. Miniscalco,et al.  An infrared band-emitter at the optical-communication wavelengths: Cr-activated Zn2SiO4 , 1993 .

[38]  R. Stoneman,et al.  Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.

[39]  L. F. Tiemeijer,et al.  Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers , 1994 .

[40]  D. Shaw Self- and impurity diffusion processes in widegap II–VI materials , 1992 .

[41]  F. Schäfer Dye lasers , 1973 .

[42]  P. Moulton,et al.  An investigation of the Co:MgF2laser system , 1985, IEEE Journal of Quantum Electronics.

[43]  S. McKeever,et al.  Growth and characterization of substrate‐quality ZnSe single crystals using seeded physical vapor transport , 1992 .

[44]  Lloyd L. Chase,et al.  LiCaAlF/sub 6/:Cr/sup 3+/: a promising new solid-state laser material , 1988 .

[45]  A. Burger,et al.  Selenium precipitation in ZnSe crystals grown by physical vapor transport , 1995 .